https://doi.org/10.1051/epjam/2016004
Research Article
Homogenization of composites using full-wave point-dipole model
School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London
E1 4NS, UK
* e-mail: m.naeem@qmul.ac.uk
Received:
18
April
2016
Accepted:
30
May
2016
Published online: 26 July 2016
We propose a full-wave point-dipole-based scheme for accurate material homogenization of composites. Unlike conventional homogenization approaches which employ periodic boundary conditions for the effective permittivity extraction, the proposed technique can efficiently compute the interactions between the scatterers even in inhomogeneous mixtures as well as aperiodic arrangement of a finite number of scatterers. The method utilizes each inclusion as a basis function, and thereby sidesteps the computational burden to discretize each inclusion scatterer. In addition, the supplementary analytical calculations provide closed-form expressions to deal with the field singularities and to calculate the mutual interaction between the scatterers. We demonstrate that the proposed homogenization scheme can precisely extract the composite permittivity profile of a finite size specimen.
Key words: Material homogenization / Field transformation / Transformation optics
© M. Naeem & Y. Hao, Published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.