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Abstract. The strong disorder RG approach for random systems has been extended in many new directions
since our previous review of 2005 [F. Igloi, C. Monthus, Phys. Rep. 412, 277 (2005)]. The aim of the present
colloquium paper is thus to give an overview of these various recent developments. In the field of quantum
disordered models, recent progress concern infinite disorder fixed points for short-ranged models in higher
dimensions d > 1, strong disorder fixed points for long-ranged models, scaling of the entanglement entropy
in critical ground-states and after quantum quenches, the RSRG-X procedure to construct the whole set
excited stated and the RSRG-t procedure for the unitary dynamics in many-body-localized phases, the
Floquet dynamics of periodically driven chains, the dissipative effects induced by the coupling to external
baths, and Anderson Localization models. In the field of classical disordered models, new applications
include the contact process for epidemic spreading, the strong disorder renormalization procedure for
general master equations, the localization properties of random elastic networks, and the synchronization
of interacting non-linear dissipative oscillators. Application of the method for aperiodic (or deterministic)
disorder is also mentioned.
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1 Introduction

The strong disorder renormalization group (SDRG)
approach has been introduced by Ma et al. [1,2] and later
further developed by Fisher [3,4] to study the low-energy
excitations and spatial and temporal correlations of ran-
dom. In these systems, the critical properties are con-
trolled by so-called infinite disorder fixed points (IDFPs),
at which disorder fluctuations dominate over quantum
fluctuations, so that the calculated properties (critical
exponents and scaling functions) are asymptotically exact.
Soon after Fisher’s results, the RG approach has been
applied to a large number of disordered systems, either
quantum (in one and higher dimensions) or classical (Sinai
random walk, classical random spin chains and poly-
mers, stochastic systems with quenched disorder, etc.).
For the models where exact results are available via other
approaches, the RG method has been able to not only
reproduce them correctly, but has allowed in addition to

predict many new critical exponents and scaling functions.
All the developments that have occoured before 2005 have
been already summarised in our review [5]. The goal of the
present colloquium paper is thus to give an overview of the
various developments since 2005. We will stress the phys-
ical ideas and the SDRG-way-of-thinking for each type of
problem, but we will usually omit the detailed derivation
of results that can be found in the original papers.

This colloquium paper is organized as follows. We begin
with the ground state properties of random quantum sys-
tems, such as the random transverse-field Ising model in
different dimensions d in Section 2, the effects of long-
ranged interactions in Section 3, as well as various other
quantum models (antiferromagnets, Ashkin-Teller mod-
els, anyonic models, the superfluid-insulator transition)
in Section 4. The scaling properties of the entanglement
in critical ground states are described in Section 5. We
then focus on the dynamical properties of localized and
many-body localized models within three different set-
tings, namely, the unitary dynamics of isolated models
in Section 6, the Floquet dynamics of periodically driven
models in Section 7, and the dissipative dynamics of open
quantum models in Section 8. Section 9 is then devoted to
Anderson localization tight-binding models for electrons.
We then turn to classical disordered models, with the ran-
dom contact process for epidemic spreading in Section 10,
the renormalization of general master equations with
randomness in Section 11, the dynamics of random clas-
sical oscillators with or without dissipation in Section 12,
and some other miscellaneous topics in Section 13.

2 Random quantum Ising model in various
dimensions d

The quantum Ising model with random couplings and/or
with random transverse fields (RTIM) is the prototype of
disordered quantum magnets having discrete symmetry.
The model is defined by the Hamiltonian:

H = −1
2

∑
ij

Jijσ
x
i σ

x
j −

1
2

∑
i

hiσ
z
i , (1)

where the σx,zi are Pauli-matrices and i, j denote sites of
a lattice. In equation (1) the couplings Jij and the trans-
verse fields hi are independent random variables, which
are taken from the distributions, p(J) and q(h), respec-
tively. In the following, we will discuss the case of ferro-
magnetic models Jij ≥ 0, where the order parameter is the
magnetization, but it should be stressed that this is not
restrictive: the SDRG approach has been applied as well to
the spin-glass case where the sign of the couplings is also
random. The numerical computations are usually done
either with two box-distributions p(J) = Θ(J)Θ(1 − J)

and q(h) =
1
hb

Θ(h)Θ(hb − h) (Θ(x) being the Heaviside

step-function), or with the fixed-h distribution q(h) =
∆(h − hf ), while p(J) follows the box-distribution as
before. The quantum control parameter is defined as
θ = lnh − ln J , where x stands for the average value of
the variable x over quench disorder. In any dimension the
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RTIM has a zero-temperature quantum phase transition,
located at some θc, separating a paramagnetic disordered
(θ > θc) and a ferromagnetic ordered phase (θ < θc).

The simplest geometry that one can consider is the
one-dimensional chain with nearest-neighbour couplings,
which has been solved analytically through the strong
disorder RG method by Fisher [3,4], as described in
details in review [5]. Later, more general geometries have
been considered, such as ladders; star-like objects; hyper-
cubic lattices in dimensions d = 2, 3, 4; Bethe lattices,
Erdős–Rényi random graphs and other type of complex
networks, as well as systems with long-range interactions.
Besides the bulk quantities, the critical behaviour of sev-
eral observables at surfaces, edges, wedges, and cones have
also been calculated.

2.1 Strong disorder RG rules

The basic steps of the renormalization procedure are iden-
tical in every geometry: at each step the largest term of the
Hamiltonian in equation (1), denoted by Ω, is eliminated
and new terms are generated through a second-order per-
turbation calculation between the remaining degrees of
freedom.
i) If the largest term is a coupling, say Jij = Ω, then the
two connected sites, i and j are coupled to form a clus-
ter. This spin-cluster then perceives an effective transverse
field of strength

h̃ij ≈
hihj
Jij

, (2)

and the magnetic moments transform additively: µij =
µi + µj , while originally µi = µj = 1.
ii) If the largest term is a transverse field, say hi = Ω, then
this site has negligible contribution to the (longitudinal)
susceptibility, and is therefore decimated out. At the same
time, new effective couplings are generated between all
sites, say j and k, which were nearest-neighbours of i. The
new contributions to the couplings are given by: J̃jk ≈
JijJik
hi

.
In higher dimensions d > 1, the topology of the lattice
is modified during the renormalization and often the new
contribution J̃jk ≈ JijJik

hi
concerns a pair of sites that were

already coupled via some coupling Jjk. In this case, one
can use their sum (sum rule), or their maximum value
(maximum rule) as the renormalized coupling

J̃jk ≈ max
[
Jjk,

JijJik
hi

]
. (3)

The maximum rule is justified at an IDFP, furthermore
the numerical algorithms are more efficient in this case,
as explained in references [6–9]. If, however, the critical
behaviour is controlled by a conventional random fixed
point, such as in the superfluid–insulator transition (see
Sect. 4.4), the sum rule can lead to more accurate results
[10].

2.2 Solution in one dimension: a reminder [5]

In one dimension with nearest-neighbour couplings, the
topology does not change during renormalization. The
cut-off (Ω) dependence of the distribution functions (cou-
plings, transverse fields, lengths, moments, etc) is written
in the form of integro-differential equations, which are
solved analytically. At the fixed point Ω → 0, the distri-
bution of transverse fields and that of the couplings are
given in the form:

P0(h,Ω) =
p0(Ω)

Ω

(
Ω
h

)1−p0(Ω)

, (4)

R0(J,Ω) =
r0(Ω)

Ω

(
Ω
J

)1−r0(Ω)

. (5)

2.2.1 Critical point: infinite disorder fixed point

At the critical point where the decimation of couplings
and transverse fields are symmetric, we have

p0 = r0 =
1

ln(Ω0/Ω)
, (6)

where Ω0 is a reference energy scale. This is an infinite
disorder fixed point, since the ratio of typical couplings
and transverse fields is going to zero or to infinity.
Therefore, the decimation steps are asymptotically cor-
rect and consequently the calculated critical properties
are asymptotically exact. At this fixed point the relation
between length-scale, L, and energy-scale, Ω is given by
the activated scaling

ln
(

Ω0

Ω

)
∼ Lψ, ψ = 1/2 , (7)

and the average moment of clusters scales as:

µ = µ0

[
ln
(

Ω0

Ω

)]φ
, φ =

1 +
√

5
2

, (8)

leading to the fractal dimension df

µ ∼ Ldf , df = ψφ =
1 +
√

5
4

. (9)

2.2.2 Griffiths phases: strong disorder fixed points

Outside the critical point, the decimation of the couplings
and the transverse fields is asymmetric, which is charac-
terized by the parameter ∆ = (p0 − r0)/2. ∆ is expressed
in terms of the original distributions as:[(

J2

h2

)∆
]

av

= 1 , (10)

and close to the critical point: ∆ ∼ θ, since θc = 0. In the
paramagnetic or disordered Griffiths phase, almost exclu-
sively transverse fields are decimated out and the solution
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close to the line of fixed points, i.e. in the limit Ω/Ω0 � 1
is given by:

p0 = 2∆, r0 ∼ (Ω/Ω0)2∆
. (11)

In the ferromagnetic or ordered Griffiths phase, the
expressions for p0 and r0 are reversed.

Relation between the length scale (distance between
non-decimated sites) and the energy-scale reads as:

Ω ∼ L−
1

2|∆| , (12)

thus ∆ is simply related to the dynamical exponent as
z = 1/2|∆|.

The properties of the Griffiths phases can be interpreted
in terms of rare regions, as reviewed in [11,12].

2.2.3 Consequences for the ground-state wavefunction

The SDRG procedure allows to evaluate any observable in
each given disordered sample. Besides all the observables
of interest reviewed in [5], a particular attention has been
paid in recent years towards the characterization of the
ground-state wavefunction, via its fidelity [13,14] and its
multifractality [15], while the entanglement properties will
be discussed in detail in Section 5.

2.3 Higher dimensions d > 1

In more complicated geometries, in particular in higher
dimensions, the SDRG can in principle be performed
numerically and the first results are reviewed in [5]. In
practical applications, a large finite sample with N sites is
renormalized up to the last effective spin, and the original
sites of the sample are parts of effective clusters of dif-
ferent sizes. In the paramagnetic phase, the clusters have
a finite typical linear extent ξ, which characterizes the
correlation length of the system. As the critical point is
approached, ξ diverges as ξ ∼ |θ − θc|−ν . In the ferro-
magnetic phase θ < θc, there is a huge connected cluster,
which is compact and contains a finite fraction m of the
sites, that directly represents the average longitudinal
magnetization. At the critical point, the giant cluster is a
fractal: its total moment µ scales with the linear size L of
the system as µ ∼ Ldf , df being the fractal dimension as
in equation (9). This is related to the scaling dimension of
the longitudinal magnetization as x = d−df . Renormaliz-
ing sites at a special position (surfaces, edges, wedges, and
cones), one obtains the scaling behaviour of the system at
the special local environment, which is characterised with
the actual local scaling exponent [16]. One can also con-
sider more special geometries, such as multiple-junctions,
at which several semi-infinite chains or plans meet [17,18].

Transverse-spin correlations are defined as: 〈σzi σzj 〉,
which are of O(1), if both sites i and j are one-site clus-
ters, (i.e., both are immediately decimated out, and these
are the white sites in Fig. 1) otherwise the correlation
is negligible. At the critical point one should consider
the connected part of the average transverse-spin correla-
tion function, which decays with the distance as a power
with the exponent ηt. Numerical SDRG results indicate

Fig. 1. Structure of connected clusters at the critical point
of the 2D RTIM with L = 64. Left panel: fixed-h distribution,
right panel: box-distribution. The color code is used to indicate
the moment of the clusters.

Table 1. Critical exponents of the RTIM in different
dimensions. In 1D the analytical results are from [3,4],
in 2D the numerical results are taken from [7], in 3D
and 4D these are from [8,9]. The surface magnetization
exponent xs and the decay exponent of the transverse
magnetization, ηt are from [16] and [19], respectively.

1D 2D 3D 4D

ν 2. 1.24(2) 0.98(5) 0.79(5)

x 3−
√

5
4

0.982(15) 1.840(15) 2.72(12)
xs 0.5 1.60(2) 2.65(15) 3.7(1)
ηt 4.1(2) 6.0(2) 8.1(2)
ψ 1/2 0.48(2) 0.46(2) 0.46(2)

[19], that this exponent is approximately ηt ≈ 2 + 2d, for
1 ≤ d ≤ 3, see in Table 1.

One important point is the relation between the energy
scale Ω (or inverse time scale) and the length-scale: in the
numerical procedure, Ω is the transverse field associated
with the last effective spin. If the scaling is controlled by
an IDFP, then the scaling relation is activated ln Ω ∼ L−ψ
as in equation (7). For strong disorder fixed point, the
scaling relation is in the conventional power-law form
Ω ∼ L−z, which generally holds in the Griffiths phase,
and the dynamical exponent z depends on the value of
the control parameter, see also in equation (12). Distri-
bution of the smallest gap in different random samples,
P (Ω, L) depends on the variable u = ΩLz: it is universal
and given by the limit distribution of extremes of inde-
pendent and identically distributed random numbers [20],
as explained in the framework of the SDRG approach in
reference [21].

The numerical implementation of the SDRG procedure
needs some care. Naive application of the decimation rules
leads to a computational time which scales as t ∼ O(N3).
Such type of procedure has been used for ladders [6] and
for square samples of linear size up to L ≈ 160 [22,23].
In reference [24], the so-called planar approximation is
introduced and in this way they could go up to L = 500.
Finally, using the maximum rule, an efficient numerical
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procedure has been introduced in references [8,9] which
works as t ∼ O(N lnN + E), where E stands for the
number of edges of the lattice. In models with nearest-
neighbour interaction E ∼ N and one can go up to N =
4 × 106, c.f. in 2D up to L = 2048. Numerical studies of
the RTIM in 2D, 3D and 4D indicate that in each case
the critical behaviour is governed by an IDFP, like in the
one-dimensional case. The probable most accurate values
of the critical exponents are collected in Table 1. The crit-
ical exponents of the RTIM in any studied dimension have
found universal, i.e. they do not depend on the actual form
of the initial disorder.

To decide about the upper critical dimension of the
IDFP, the critical properties of the RTIM have been stud-
ied on Erdős–Rényi random graphs [8,9], which are for-
mally infinite-dimensional objects. The numerical results
have indicated that the critical behaviour is controlled
by a logarithmically infinite disorder fixed point, point-
ing towards an infinite upper critical dimension for this
type of problem.

2.4 Approximate RG methods

Simpler approximation methods have been developed and
applied to the RTIM [25–31]. One of those [25] is based
on the quantum cavity approach [32,33], which is found to
reproduce some of the exact results in 1D. The quantum
cavity method is equivalent to a linearized transfer matrix
approach [27]. If no linearization is performed, i.e. in the
so-called non-linear transfer matrix approach, one obtains
IDFP behaviour for d ≥ 2 [27]. Also, approximate renor-
malization group schemes have been suggested [28–31],
during which the order of the RG steps is changed in such
a way that the proliferation of new couplings is avoided.
These methods have reproduced some exact 1D results
and also provide IDFP behaviour for d ≥ 2, in agreement
with the standard SDRG method.

3 Random quantum systems with long-range
interactions

In nature there are magnetic materials in which order-
ing is due to long-range (LR) interactions which decay
as a power α = d+ σ with the distance. The best known
examples are dipolar systems, such as the LiHoF4. Putting
this compound into an appropriate external magnetic
field we obtain an experimental realisation of a dipo-
lar quantum ferromagnet [34]. Similar systems have been
experimentally realised recently by ultracold atomic gases
in optical lattices [35–39]. Here, we consider quantum
magnets with LR interactions in the presence of quenched
disorder. Such type of a system is realised by the com-
pound LiHoxY1−xF4, in which a fraction of (1 − x) of
the magnetic Ho atoms is replaced by non-magnetic Y
atoms [34]. A related, but somewhat simplified quantum
model which describes the low-energy properties of this
system is the random transverse-field Ising model with
LR interactions given by the Hamiltonian:

H = −
∑
i 6=j

bij
rαij
σxi σ

x
j −

∑
i

hiσ
z
i , (13)

where the bij > 0 parameters and the hi > 0 trans-
verse fields are i.i.d. random variables with given initial
distributions.

In the LR model couplings and transverse fields play
a different role and this asymmetry is manifested in the
SDRG trajectories. At the critical trajectory couplings
are very rarely decimated and the renormalised trans-
verse fields follow equation (2). On the contrary almost
always transverse fields are decimated out, and according
to the maximum rule in equation (3) we have typically:
J̃jk ≈ Jjk. Using these observations a primary model
has been formulated, which has an exact solution in one
dimension.

3.1 1D – solution of the primary model [40]

In the primary model, the transverse fields are random,
but the couplings are non-random, i.e. bij = b = 1. In
the paramagnetic phase and at the critical point, almost
always transverse fields are decimated. After decimating
hi, the effective coupling between nearest clusters i − 1
and i + 1 will always be smaller than the deleted ones,
Ji−1,i and Ji,i+1 and we assume that according to the
maximum rule J̃i−1,i+1 = Ji−1,i+1. Then the renormal-
ization rule of couplings between nearest clusters can be
expressed in terms of the length variables as J̃−1/α

i−1,i+1 =

J
−1/α
i−1,i +J

−1/α
i,i+1 +wi, where wi is the extension of the clus-

ter, which will be neglected in the following. Using reduced
variables ζ =

(
Ω
J

)1/α−1 and β = 1
α ln Ω

h , the approximate
renormalization rules are

ζ̃ = ζi−1,i + ζi,i+1 + 1 , (14)

and

β̃ = βi + βi+1 , (15)

for field and bond decimation, respectively. Since, in
the ferromagnetic phase, the effective couplings between
remote clusters may be stronger than those between adja-
cent ones due to the large mass of clusters, this approach is
justified only in the paramagnetic phase and at the critical
point.

The decimation equations in equations (14) and (15)
are identical to those of the 1d disordered O(2) quantum
rotor model of granular superconductors [41,42] with the
grain charging energy Ui and Josephson coupling Ji,i+1

corresponding to Ui ↔ J
1/α
i,i+1 and Ji,i+1 ↔ h

1/α
i , see in

Section 4.4.
The fixed-point solution for the distributions ζ and β

can be found in [40], here we recapitulate the basic results.
The solutions are parameterised with a variable a, which
is positive a > 0 in the paramagnetic phase and vanishes
a = 0 at the critical point. The relation between the aver-
age distance of clusters, L, and the energy-scale Ω is given
by:

L ∼
(

Ω0

Ω

) 1+a
α

, (16)
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with an additional factor ln2(Ω/Ω0) for a = 0. Thus, the
dynamical exponent z = α/(1+a) is a continuous function
of a, and it is maximal but finite at the critical point:
zc = α. The limit distribution of the transverse fields for
Γ → ∞ follows the power law g(h) ∼ h1/z−1, thus the
transition is controlled by a strong disorder fixed point.
The average correlation length scales at the vicinity of
the critical point as:

ξ ∼ exp(C ′/a), a = (θ − θc) , (17)

which is similar to that at a Kosterlitz–Thouless transition
point. The ratio of decimated couplings and decimated
fields scales at the critical point with the size of the
system, L, as:

r(L) ' 2 ln−ω(L/L0), ω = 2 . (18)

The typical magnetic moment of critical clusters scales
also logarithmically:

µ(L) ∼ lnχ L, χ = 2 , (19)

thus the fractal dimension is formally df = 0. Finally, the
entanglement entropy SL of a finite block of size L in an
infinite system is found to approach a finite limiting value
as L→∞, even at the critical point.

Results of the numerical SDRG analysis (with the max-
imum rule) of the LR random transverse-field Ising chain
are in agreement with the findings of the primary model,
even if the couplings, i.e. the parameters bij are random.

3.2 3D – numerical strong disorder RG study

The 3D LR model has been studied by the SDRG
approach with the maximum rule [43] and similar
behaviour of the RG trajectories are observed as in 1D.
At a given energy scale, Ω, the renormalization is charac-
terised by the ratio of decimated couplings and decimated
fields, r.

In the paramagnetic phase and at the critical point,
where the maximum rule is expected to hold, at the line of
fixed points, Ω→ 0 we have r → 0, and these fixed points
are stable. In the vicinity of this fixed line almost exclu-
sively transverse fields are decimated, the distribution of
which is given by a power-law:

g(h) =
d

z
h−1+d/z , (20)

with an effective (Ω, i.e. r dependent) dynamical expo-
nent z. At the fixed line z is maximal at the critical
point, having a value zc ≈ α, as in 1D. The other criti-
cal parameters (correlation length, decimation ratio and
cluster moment) have similar behaviour as in 1D, thus the
relations in equations (17–19) are valid, only the expo-
nents of the logarithm in equations (18) and (19) are
somewhat different.

The RG phase-diagram can be extended to include the
ferromagnetic phase, too, where the RG-flow scales to r →
∞. This is shown in Figure 2. The line of fixed points at

Fig. 2. Schematic SDRG phase diagram obtained through
the maximum rule as a function of the ratio r and the effective
dynamical exponent defined in equation (20). The arrows indi-
cate the direction the parameters evolve as the energy-scale is
reduced. Fixed points (blue circles) are at r = 0: the attrac-
tive fixed points of the paramagnetic phase (α/z > 1) and the
repulsive ones (α/z < 1) are separated by the critical fixed
point (red circle).

r = 0 at other side of the critical point with α/z < 1 are
unstable and the RG-flow scales to r →∞. In this regime
the maximum rule in the SDRG procedure is certainly not
valid. The two regimes of fixed points are separated by the
critical fixed point at α/z = 1.

In the vicinity of the line of fixed points at r = 0,
almost exclusively transverse fields are decimated out. In
a finite cluster of linear size ` however, there are the
few smallest ones which remain intact. From the distri-
bution of the fields in equation (20) one can estimate the
value of these non-decimated fields through extreme value
statistics. This type of analysis leads to basically identical
results, as obtained through the SDRG approach. Using
this type of analysis it has been argued that the extrap-
olated value of the magnetization from the ferromagnetic
side has a finite limiting value and thus the transition is
of mixed-order.

3.3 Other quantum models with LR interactions

3.3.1 Ising chains with other type of LR interactions

The case where the long-ranged interactions are dilute are
analyzed in [44,45]. The Dyson hierarchical version of the
quantum Ising chain with LR power-law ferromagnetic
couplings and pure or random transverse fields is studied
via real-space renormalization in [46], while the Dyson
hierarchical LR quantum spin-glasses are investigated in
[47].

The critical properties of random quantum systems, in
particular the RTIM in one dimension in the presence
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of LR interactions which decay in a stretched exponen-
tial fashion, as J(r) ∼ exp(−Cra) has been studied in
reference [48]. Using a variant of the SDRG approach sim-
ilar to the primary model presented in Section 3.1, the
critical behaviour is found to depend on the parameter a.
For 0 < a < 1/2, the critical behaviour is controlled by
an IDFP, in which the critical exponents are a-dependent
and these are different from those in the SR model. For
example one obtains ψ = a, which is understandable, since
the relation between energy scale and length scale is dom-
inated here the form of LR interactions. On the contrary
for a > 1/2 the LR interactions are irrelevant and the
critical properties of the model are the same as its SR
variant.

3.3.2 Random Heisenberg chains with LR interactions

In references [49,50] the Hamiltonian of N LR interacting
S = 1/2 spins is considered:

HHeis =
∑
i 6=j,β

JβijS
β
i S

β
j , (21)

which are placed randomly on a periodic lattice of length
L and lattice spacing s. The interaction between all pairs
of sites i, j are antiferromagnetic:

Jβij = J |(ri − rj)/a|−α exp(−|(ri − rj)|/ξ) , (22)

having a power-law decay with exponent α and an expo-
nential cut off with a length scale ξ. This model is aimed
to better understand the magnetic properties of doped
semiconductors. The singular properties of the model are
studied by the SDRG method with the use of the sum
rule. In the LR limit, ξ →∞, the distribution function of
the low energy excitations are studied by various values
of α and at a critical value αc = 1.6 it coincides with a
critical function pointing towards the existence of a many
body localization transition.

In reference [50] the magnetic susceptibility χ(T ) is
studied as a function of the temperature T . In the LR
limit, ξ → ∞ a crossover is observed at α∗ = 1.066
between a phase with a divergent low-temperature suscep-
tibility χ(T → 0) for α > α∗ to a phase with a vanishing
χ(T → 0) for α < α∗.

4 Other random quantum models

The RTIM is one of the most studied random quantum
models, for wich some new quantities, such as the trans-
verse magnetization [19] and the magnetic Grüneisen ratio
[51] have been studied by the SDRG method. Besides
models that can be directly mapped onto the RTIM, such
as for instance the Majorana model considered in [52],
many other short-ranged random quantum models have
been analyzed via SDRG since the review [5].

4.1 Models with discrete symmetry

4.1.1 Antiferromagnetic random quantum Ising chain

The antiferromagnetic random quantum Ising chain is
defined by the Hamiltonian:

HAF =
∑
i

Jiσ
z
i σ

z
i+1 −

∑
i

hiσ
x
i −

∑
i

Hiσ
z
i , (23)

with Ji, hi, Hi > 0. The clean model has paramagnetic and
antiferromagnetic ordered phases, which are separated by
a critical line, which for h > 0 is controlled by the Ising
quantum fixed point at h/J = 1 and H/J = 0. At h = 0,
when the model is classical there is a multicritical point
at H/J = 2 separating the antiferromagnetic phase from
the ferromagnetic one.

In the random chain, where the couplings are dis-
tributed uniformly in 0 < J < 1 and the random
transverse-fields are distributed uniformly in 0 < h < h0

(but the longitudinal fields were non-random, Hi = H),
infinite disorder scaling is observed only at H = 0, which
is equivalent to the RTIM in 1D. For any finite value of
H > 0 the numerical results indicate strong disorder scal-
ing, thus a paramagnetic phase with Griffiths singularities
[53]. More recent studies indicate that the region of infi-
nite disorder criticality is extended to H > 0, provided the
distributions of the couplings and that of the transverse
fields have a finite bounding value from below and above
[54].

4.1.2 Ashkin–Teller chains

The N -colour Ashkin–Teller chain is defined in terms of
α = 1, 2, . . . , N -sets Pauli-matrices by the Hamiltonian:

HAT = −
N∑
α=1

∑
i

(
Jiσ

z
α,iσ

z
α,i+1 + hiσ

x
α,i

)
−

N∑
α<β

∑
i

(
Kiσ

z
α,iσ

z
α,i+1σ

z
β,iσ

z
β,i+1 + giσ

x
α,iσ

x
β,i

)
,

(24)

which is the generalization of the standard Ashkin–Teller
chain with N = 2, which has been studied before and
reviewed in [5]. In terms of positive random parameters,
however keeping the ratios εh,i = gi/hi and εJ,i = Ki/Ji
spatially homogeneous: εh,i = εJ,i = εi the model has been
investigated by the SDRG method in a series of papers
[55–58]. Different phases and various critical and multi-
critical points have been identified, which all are of the
infinite disorder type. Various numerical studies have been
performed to confirm the SDRG predictions [59–62].

4.2 Models with continuous symmetry

The random Heisenberg antiferromagnetic spin chain is
the first model where SDRG has been introduced [1]. After
the various works already reviewed in [5], more recent
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studies include the effects of next-nearest-neighbour inter-
action in d = 1 [63], the case of wealkly coupled chains [64],
models in dimension d = 2 [65–67], as well as the gener-
alizations to various type continuous symmetry (SU(3),
SU(N), SO(N)) considered in the series of papers [68–72],
where different types of random singlet phases are identi-
fied via SDRG and the low-energy behaviour is controlled
by infinite disorder fixed points.

The S = 1 random spin chain is studied by the numeri-
cal application of the SDRG method [73], finding that the
cross-over in the critical behaviour with the strength of
disorder is in agreement with the analytical theory . Other
studies of random spin chains with string-order parameter
include the random Majumdar–Ghosh Chain [74] and the
random cluster-Ising model [75].

The one-dimensional Hubbard model with random-
hopping matrix-elements, and with random onsite
Coulomb repulsion terms is studied by the SDRG method
[76]. Two critical phases are identified, which correspond
to an infinite disorder spin random singlet for strong inter-
actions and to an orbital infinite disorder fixed point for
vanishing interactions. To each critical infinite disorder
fixed point is connected a Griffiths phase.

Layers and bilayers of s = 1/2 Heisenberg antiferromag-
nets with different types of disorder: bond randomness,
site dilution, and dimer dilution are studied by the numer-
ical application of the SDRG method [77]. Generally, the
systems exhibit an ordered and a disordered phase sepa-
rated by a phase boundary on which the static critical
exponents appear to be independent of bond random-
ness in the strong-disorder regime, while the dynamical
exponent is a continuous function of the bond disorder
strength. The low-energy fixed points of the off-critical
phases are affected by the actual form of the disorder, and
the disorder-induced dynamical exponent depends on the
disorder strength. As the strength of the bond disorder is
increased, there is a set of crossovers in the properties of
the low-energy singularities.

4.3 Disordered non-abelian anyonic chains

Non-abelian order is a particular feature in two-
dimensional quantum systems and non-abelian excitations
are present in fractional quantum Hall states. Chains of
interacting anyonic quasiparticles are introduced recently
and their properties in the presence of quenched disorder
has been studied through the SDRG method [78–81].

Let us consider a simple example of anyonic models,
the Fibonacci or golden chain, which is introduced on the
analogy of the S = 1/2 Heisenberg model with SU(2) sym-
metry:H =

∑
i JiSiSi+1, for which the energy of a nearest

neighbour pair is different in the singlet and in the triplet
chanels, and according to tensor product or the fusion
rule we have: 1

2 ⊗
1
2 = 0 ⊕ 1. The Fibonacci chain con-

sists of non-abelian anyons carrying a topological charge,
τ , and their interaction is described by the fusion rule:
τ ⊗ τ = 1⊕ τ , which means that the Hilbert space of two
neighbouring anyons is the direct sum of unity and a copy
of τ . This type of construction can only be described by
a truncated tensor product, where the SU(2) representa-
tions are truncated at a level k. The Hamiltonian of the

Fibonacci chain is given in the form:

H =
N∑
i=1

JiP
A
i , (25)

where Ji are the random interactions and PAi is the
singlet projection operator between site i and i+ 1. Gen-
erally the Hilbert space of N + 1 anyons is given by the
Nth Fibonacci number. Other type of non-abelian any-
onic chains can be constructed in similar way, important
class being the SU(2)k anyonic chains, the Fibonacci chain
corresponds to k = 3.

In the SDRG procedure we choose the strongest cou-
pling in the chain, Ω = |Ji|, and decimate it. For a strong
antiferromagnetic coupling the sites i and i + 1 form a
singlet, and an effective coupling J̃ ≈ κJi−1Ji+1

Ji
is formed

between sites i− 1 and i+ 2, with κ = φ2 and φ = 1+
√

5
2 ,

the golden mean ratio. For a strong ferromagnetic bond
sites i and i+ 1 form a cluster, having effective couplings
to the nearby sites: J̃ ≈ −Ji±1

φ .
The SDRG transformation has an infinite disorder fixed

point, so that the ground state is a random singlet phase.
The relation between energy scale and length scale is
activated, with the critical exponent ψAF = 1/2 if the
original model is antiferromagnetic, and ψAF/F = 1/3 if
in the original model there is a finite fraction of ferro-
magnetic bonds. The SDRG analysis has been extended
for other non-abelian anyonic chains, a detailed analy-
sis of the results can be found in reference [81]. Relation
with SU(N) symmetric random chains has been noticed
in [68–72].

4.4 Superfluid-insulator transition

One-dimensional Josephson junction array with ran-
dom couplings Ji and random charging energies Ui are
described by a quantum rotor Hamiltonian:

H =
∑
i

Ui(n̂i − ni)2 −
∑
i

Ji cos(θ̂i − θ̂i+1) , (26)

with charges n̂i and phases θ̂i at site i, which satisfy
the commutation relations:

[
n̂k, θ̂l

]
= −iδkl. At each site

there is a random offset charge (or chemical potential),
which is taken as −1/2 < ni < 1/2 and the integer part is
absorbed into the definition of n̂i. This model is considered
as an effective theory of interacting bosons propagating in
a random potential and the type of the insulating phase is
found to depend on the symmetry properties of the offset
charge distribution.

The SDRG treatment of this model is described in ref-
erences [10,82–86] and has been recently reviewed in [87].
Here we just recapitulate the main ideas. The energy gap
due to charging energy is ∆i = Ui(1 − 2|ni), that should
be compared with the interaction coupling Ji, and their
maximum term defines the energy-scale Ω.

If Ω = ∆i corresponds to a large gap, this site is fixed
to its lowest energy state and an effective coupling is
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generated between sites i− 1 and i+ 1:

J̃ =
Ji−1Ji

Ω(1 + 2|ni|)
, (27)

and in the denominator the term 1 + 2|ni| is set to unity.
On the contrary, if Ω = Ji corresponds to a large Joseph-
son coupling, a cluster with a coherent phase is formed
with an effective capacitance: C̃ = Ci + Ci+1, thus the
effective charging energy follows the rule:

1
Ũ

=
1
Ui

+
1

Ui+1
. (28)

Introducing scaling variables: βi = ln(Ω/Ji) and ξi =
Ω/Ui − 1 in the vicinity of the fixed point, where the
expressions for the offset charges are simplified, one arrives
at the same form of the flow equation of the distribution
functions as for the primary model of the one-dimensional
RTIM with LR interactions of Section 3.1. The paramag-
netic phase of the LR RTIM corresponds to the superfluid
phase, while the ferromagnetic one to the insulator phase.
The superfluid phase is just a Griffiths phase with a
dynamical exponent z = 1/(1 +a), the supefluid-insulator
transition is of strong disorder type with z = 1 and with
an exponentially diverging correlation length. Details of
the solution and a review of the numerical results are
given in reference [87]. As a final remark, let us stress
that the nature of Superfluid-Bose Glass Transition has
remained controversial over the years, as summarized in
recent numerical investigations [88,89].

4.5 Superconductor-metal transition

An infinite-randomness fixed point has also been found
for the superconductor-metal quantum phase transition
[90–93].

4.6 The rainbow spin chain

Although the so-called ‘Rainbow spin chain’ is not ran-
dom, the spatial structure of its inhomogeneity allows to
apply iteratively the Ma–Dasgupta SDRG rule to con-
struct the ground state and analyze its entanglement
properties [94–98]. The addition of disorder in this rain-
bow spin chain has been also studied recently via SDRG
[99].

5 Entanglement properties

The entanglement of quantum many-body systems is a
promising concept to understand their topological and
universal properties, in particular in the vicinity of a quan-
tum phase-transition point (see the reviews [100–102]).
The entanglement of the ground state |Ψ〉 between the
subsystem A and the rest B of the system is quanti-
fied by the von Neumann entropy S = −TrA (ρA log2 ρA)
of the reduced density matrix ρA = TrB|Ψ〉〈Ψ |. Gener-
ally S scales with the area of the interface separating A

and B. In some cases however, there are singular correc-
tions to the area law. In one-dimensional pure systems,
S is logarithmically divergent at a quantum critical point
[103–105]: S = c

3 log2 `+ cst. Here ` is the size of the sub-
systemA and the prefactor is universal, c being the central
charge of the conformal field theory. Besides this entan-
glement entropy, it is interesting to consider also the full
entanglement spectrum [106].

In random quantum systems the entanglement proper-
ties are conveniently studied by the SDRG approach and
many of the obtained results, mainly in one-dimension are
thoroughly reviewed in references [81,102]. Therefore, here
we just shortly mention the known results in 1D and we
concentrate on the higher dimensional results, as well as
on the more recent developments.

5.1 Random quantum chains

The ground state of the S = 1/2 random-bond Heisenberg
chain in the SDRG approach is a random singlet phase
and each singlet bond which connects the two subsys-
tems A and B has a contribution 1 to the entanglement
entropy. The entanglement entropy scales logarithmically:
S = ceff

3 log2 ` + cst, with an effective central charge
ceff = ln 2. The entanglement across a weakened link is
studied in reference [107], while the multifractal Orthogo-
nality Catastrophe produced by a local cut is analyzed in
[108].

The ground state of random S > 1/2 chains depends on
the strength of disorder. For strong enough disorder it is
a spin-S random singlet phase having an effective central
charge ceff = ln(2S + 1) [109–112]. For weaker disorder
there are a set of multi-critical points, at which the central
charge has not yet been calculated exactly. The case S = 1
is studied in reference [110].

For the RTIM the ground state in the SDRG approach
consists of a set of clusters of different sizes (see in Fig. 1)
and each cluster which has points in both subsystems A
and B has a contribution 1 to the entanglement entropy.
In one dimension, according to SDRG calculations in
the off-critical region, S is finite and thus satisfies the
area law. At the critical point, it is logarithmically diver-
gent, and the effective central charge is ceff = ln 2/2, i.e.
just the half of that in the random XX- and S = 1/2
Heisenberg chains, which follows also from an exact map-
ping [113]. In a given sample of finite length, the position
of the maximum of the average entanglement entropy
(the average is made over all possible positions of the
subsystem) can be used to define a sample dependent
pseudo-critical point [114].

The effective central charge of random one-dimensional
systems calculated from the average entanglement entropy
is generally smaller than its analogous value in the pure
model. One can however construct models, in which
the effective central charge of the random model is the
larger [115]. One can also construct models with (locally)
correlated disorder, so that the local control param-
eter stays constant [116]. In such models the critical
behaviour, as well as scaling of the critical entanglement
entropy follows the same form as in the pure systems
[116,117].
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The entanglement entropy between a random and a
clean part of a system, such in the XX-chain has also
been considered recently. In this case, at the critical point,
a very weak, double-logarithmic dependence is observed
[118]: S ∼ ln ln `. For a related study of entanglement
across extended random defects see [119]. Entanglement
entropy at multiple junctions of random quantum chains
has been studied in [120]. The SDRG approach has also
been used to study the critical properties of aperiodic
quantum spin chains [121–124] and their entanglement
entropy is calculated in the strong aperiodicity limit
[125,126].

Other entanglement measures have been also studied in
random quantum chains, like the entanglement [127,128]
or the concurrence [129] between distant pairs of q-bits,
the full entanglement spectrum of random singlet critical
points [130], the Rényi entropies [131], the fluctuations
of the entanglement entropy [132], the full probability
distribution of the entanglement entropy [133], the
Schmidt-gap (i.e. the difference between the two largest
eigenvalues of the entanglement spectrum) for the RTIM
and for the S = 1 random spin chain [134]. Using the
SDRG method the entanglement negativity in random
singlet phases are shown to scale logarithmically with the
size of the system [135].

Motivated by the entanglement entropy in the ran-
dom singlet phase of the random S = 1/2 spin chain,
entanglement measure through valence bond entangle-
ment has been proposed for SU(2) quantum systems
[136], which can be efficiently measured through quan-
tum MC calculations both in one- and two-dimensions
[137,138].

5.2 RTIM in higher dimensions

The entanglement entropy of the RTIM is given by the
number of such clusters in the ground state which have
points both in A and B. This quantity has been con-
sidered first in reference [22] and at the critical point, a
singular behaviour in the form of S ∼ ` ln ln ` has been
found in finite systems with linear size L = 64. Soon
after the calculation has been extended up to L = 160
[23] and the numerical results have been interpreted as
a logarithmic correction to the area law: S ≈ a` + b ln `.
To decide between the two suggested singular forms, a
calculation has been performed with the very efficient
numerical algorithm up to L = 2028 and by two different
forms of disorder. These calculations have been performed
also for 3D and 4D [139].

At the critical point of a D-dimensional system, the
entanglement entropy when the subsystem A is a cube
is found to be in the form:

S(D)
cube(`) = aD−1fD−1 +

D−2∑
E=1

aEfE + S(D)
cr (`) , (29)

where the first term represents the area-law, the sec-
ond terms are analytical corrections due to E-dimensional
edges and the last term is the corner contribution, which
is logarithmically divergent: S(D)

cr (`) = b(D) ln ` + const.

According to numerical estimates the prefactors are uni-
versal, i.e. disorder independent and given by b(2) =
−0.029(1), b(3) = 0.012(2) and b(4) = −0.006(2).

The corner-entropy has also been studied in the vicinity
of the critical point and found to be extremal at the critical
point. Outside the critical point, S(D)

cr (`, δ) is finite and
can be obtained by replacing ` with the finite correlation
length ξ, where the divergence of ξ at the critical point is
characterised by the given exponent in Table 1.

5.3 Bond diluted quantum Ising model

The bond diluted quantum Ising model is defined by the
Hamiltonian in equation (1) with hi = h and with nearest-
neighbour couplings which are J > 0 with probability p
and J = 0 with probability 1− p. At the percolation tran-
sition point pc, for small transverse field h, there is a line of
phase transition, the critical properties of which are con-
trolled by the percolation fixed point [140], for a review see
[141]. The ground state of H is given by a set of ordered
clusters, which are in the same form as for percolation.
Now consider a subsystem A with boundary Γ and calcu-
late the entanglement entropy between the subsystem and
the environment, which is given by the number of clusters
in A which intersect Γ and contain also at least one point
of the environment.

In two dimensions it is given in the same form as for
the RTIM [142]:

SΓ = aLΓ + b logLΓ , (30)

where LΓ is the length of Γ. The prefactor of the log-
arithm in equation (30) is given by the Cardy–Peschel
formula [143]:

b = − 5
√

3
96π

∑
k

[(
π

γk

)
−
(γk
π

)
+
(

π

2π − γk

)
−
(

2π − γk
π

)]
, (31)

where γk is the interior angle at each corner. In the special
case of the square subsystem one has b = −5

√
3/(36π) =

−0.07657. The conformal prediction in equation (31) has
been confirmed by numerical calculations for different
shapes of Γ [142].

In d = 3, numerical calculations have confirmed that
the singular contributions to the entanglement entropy of
the bond diluted quantum Ising model are due to corners,
and the prefactor of the logarithm is given by b = 1.72(3),
which is different from that in the RTIM [144].

5.4 Relations between SDRG and entanglement
algorithms

Since tensor networks have become very popular in recent
years, it is interesting to point out that the SDRG actually
corresponds to a special type of multi-scale-entanglement-
renormalization-ansatz (MERA) (see Sect. IV of the
review [145]) and has been integrated into various ten-
sor network algorithms [53,146–149]. Recently, in analogy
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with SDRG, a Strong-Disorder-Disentangling procedure
[150] has been introduced: at each step, one chooses the
most strongly entangled pair of sites, in order to construct
iteratively the appropriate unitary circuit that trans-
forms a given quantum state into an unentangled product
state. The goal is to reveal the emergent entanglement
geometry.

6 Localized and many-body localized phases
of quantum spin chains

For random quantum spin chains that can be mapped
onto free-fermions via the Jordan–Wigner transforma-
tion, the presence of disorder in this one-dimensional
geometry leads to the Anderson-real-space-localization of
all fermionic modes. In the presence of interactions, the
issue of many-body localization in isolated random quan-
tum spin chains has attracted a lot of attention recently,
as reviewed in [151–155]. Among the various methods
that have been proposed to construct the local inte-
grals of motion (LIOMs) that characterize the many-body
localized phase (see the reviews [156,157] on LIOMs),
Strong disorder RG procedures have been introduced
under the names of RSRG-X and RSRG-t, in order to
construct the excited eigenstates or the effective dynamics
respectively.

6.1 RSRG-X for excited eigenstates

In order to construct the whole set of eigenstates, the main
idea of the RSRG-X procedure [158] is to keep the two
possible local-energy-branches at each step, instead of pro-
jectiong systematically onto the lowest local energy branch
when the goal is to construct only the ground-state.
The RSRG-X can be formulated for the most general
Hamiltonian involving Pauli matrices [159]

H =
∑
[µ]

h[µ]σ
[µ] =

∑
µ1,..,µN

h[µ1,..,µN ]σ
µ1
1 σµ2

2 ...σµNN , (32)

where µi = 0, 1, 2, 3 is the index of the Pauli matrix acting
on spin i. One chooses the maximum Ω = max(h[µ]) =
h[µ0] among the real couplings h[µ] of the Hamiltonian.
The corresponding term

H0 = h[µ0]σ
[µ0] , (33)

has two levels (±h[µ0]) corresponding to the high/low
energy sectors. The rest of the Hamiltonian can be classi-
fied according to the commutativity or anticommutativity
with H0

H −H0 = Hcomm
1 +Hanti

1 . (34)

The part Hcomm
1 that commutes with H0 is kept to

describe its effect withing each energy-level of H0. The
part Hanti

1 that anticommutes with H0 and that couples
the two sectors is taken into account by second-order per-
turbation theory to obtain the renormalized Hamiltonian
within each energy sector of H0

HR = H0 +Hcomm
1 −Hanti

1

1
2H0

Hanti
1 . (35)

These rules are thus formally very similar to the Fisher
SDRG rules for the ground state. An alternative formula-
tion of the RSRG-X rules in terms of Majorana fermions
is described in [160] with its advantages.

While the writing of RSRG-X rules is a direct general-
ization of the SDRG-rules for the ground-state, it should
be stressed that their numerical implementation is much
more involved. Indeed, the exact construction of the 2N
eigenstates for a chain of N spins is limited to small sizes
as a consequence of the exponential cost. To overcome
this limitation, the authors of reference [158] have thus
proposed to replace the exact application of the renormal-
ization rules on all branches by a Monte Carlo sampling
of the typical branches of the tree. The RSRG-X proce-
dure has been applied to many random models, including
the XX chain [161,162], the XXX chain [163], the XXZ
chain [164], the XYZ chain [165], the three-state quantum
clock model [166] and anyonic spin chains [167,168]. Vari-
ants of the RSRG-X procedure have been also introduced
to analyze the phase transition between different MBL-
phases in the long-ranged quantum spin-glass model [169]
and for the random transverse field spin-glass model on
the Cayley tree [170].

6.2 RSRG-t for the unitary dynamics

The RSRG-t for the effective unitary dynamics of isolated
quantum spin chains [171,172] is based on the iterative
elimination of the highest local frequency Ω. The idea is
that the local degree of freedom with the two energy-levels
e1 and e2 and corresponding projectors P1,2

H0 = e1P1 + e2P2, (36)

that is associated to the highest frequency Ω = e2 − e1

oscillates freely. In the interaction picture, the rest of the
Hamiltonian

V ≡ H −H0, (37)

becomes the time-periodic Hamiltonian of high frequency
Ω

V int(t) = eiH0tV e−iH0t = V0 + V1e
iΩt+V−1e

−iΩt, (38)

with the three Fourier coefficients

V0 = P1V P1 + P2V P2 ,

V1 = P2V P1 ,

V−1 = P1V P2 = V†1 . (39)

The high-frequency expansion for Floquet dynamics
[173] then yields that the effective Hamiltonian for the
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remaining degrees of freedom reads [174]

Veff = (P1V P1 + P2V P2)

+
1
Ω

(P2V P1V P2 − P1V P2V P1) +O

(
1

Ω2

)
.

(40)

The first ligne corresponds simply to the projection of
V onto the energy levels of H0, while the second ligne of
order 1/Ω contains virtual processes between the the two
energy levels. This formula for the RSRG-t rules is thus
equivalent to the RSRG-X rules of equation (35) based on
the two first-order perturbation theory for energy-levels,
but this dynamical point of view shed a different light on
the interpretation of the RG procedure. At some given
time t, the degrees of freedom are separated into two
groups with respect to Ωt = 1

t :
(i) The local degrees of freedom that would have had

higher eigenfrequencies |Ω| > Ωt have been converted
into LIOMs via the projectors P1,2 that commute with
Heff , i.e. they have converged towards their asymptotic
state described by the diagonal ensemble of their local
Hamiltonian H0, while the off-diagonal contributions have
been time-averaged-out.

(ii) The remaining degrees of freedom that are char-
acterized by renormalized eigenfrequencies |Ω| < Ωt have
not yet converged towards their asymptotic state, since
they have not had enough time to oscillate with their
eigenfrequency.

The application of the RSRG-t procedure to various
models is described in [171,172,175]. As a final remark, let
us mention that another type of nonequilibrium dynamical
renormalization group has been studied in [176,177].

6.3 Non-equilibrium dynamical scaling of observables

Following the experimental progress in non-equilibrium
dynamics of ultracold-atomic gases in optical lattices,
there are tremendous theoretical efforts aimed at under-
standing the time-evolution of certain observables in
closed quantum systems after a sudden or smooth change
of Hamiltonian parameters. In a quench process, both the
functional form of the relaxation and the properties of the
stationary state are of interest. Here, we report numeri-
cal results obtained about the non-equilibrium relaxation
process in random quantum systems, almost exclusively
in one dimension.

Concerning the functional form of the time-dependence
of the entanglement entropy [178–182], the results depend
on whether the random quantum system can be described
in terms of free fermions or not. If the system consists
of non-interacting fermions – such as the XX-spin chain
with bond disorder or the critical random transverse-field
Ising chain – the dynamical entanglement entropy grows
ultraslowly in time as

S(t) ∼ a ln ln t , (41)

and saturates in a finite system at a value

S(`) ∼ b ln ` , (42)

where ` denotes the size of a block in a bipartite system
and can be chosen to be proportional to the size of the sys-
tem L [179,182]. Similar scaling forms have been observed
for the non-equilibrium relaxation of the full counting
statistics in a disordered free-fermion system [180]. By the
strong disorder RSRG-t method [171,172] of Section 6.2,
the ratio of the prefactors in (41) and (42) is predicted
as b/a = ψne, where ψne = 1/2 is a critical exponent in
the non-equilibrium process and describes the relation
between time scale and length scale as

ln t ∼ Lψne . (43)

Numerical estimates of b/a are somewhat larger, being
in the range 0.69–0.59. This discrepancy may be due
to the fact that for disordered systems, because of the
necessity of calculation of some extremely small eigenval-
ues, standard eigenvalue solvers would fail to converge for
some large-size samples, leading to significant numerical
errors.

For interacting fermion models in the many-body-
localized phase, the time-dependence of the dynamical
entropy is S(t) ∼ lnω t with ω ≥ 1, while the saturation
value follows the volume law, S(`) ∼ ` [181]. In this case
SDRG theory and numerical results are mainly consistent.

The time evolution of the average magnetization, m(t),
of the one-dimensional RTIM after global quenches is
studied numerically by using multiple precision arithmetic
[183]. In this way, the numerical inaccuracies observed
in the computation of the entanglement entropy are cir-
cumvented. Starting from a fully ordered initial state,
the relaxation to the critical point is logarithmically slow
described by m(t) ∼ lna

′
t, and in a finite sample of

length L, the average magnetization saturates at a size-
dependent plateau mp(L) ∼ L−b′ ; here the two exponents
satisfy the relation b′/a′ = ψne = 1/2. This result is con-
sistent with the SDRG prediction. Starting from a fully
disordered initial state, the magnetization stays at zero
for a period of time until t = td with ln td ∼ Lψne and
then starts to increase until it saturates to an asymptotic
value mp(L) ∼ L−b

′′
, with b′′ ≈ 1.5. The distribution of

long-time limiting values of the magnetization shows that
the typical and the average values scale differently and the
average is governed by rare events.

For the random Heisenberg chain, the dynamical prop-
erties at finite temperature have been studied numerically
and compared with SDRG predictions in [184,185]. The
non-equilibrium quench dynamics in quantum spin chains
with aperiodic interactions have been studied numerically
in [186–188].

Besides the quantum quenches discussed up to now, the
opposite limit of adiabatic changes of the parameters of
the Hamiltonian has also been studied recently via SDRG
to analyze the Kibble Zurek dynamics through the critical
point [189].

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 290 Page 13 of 25

6.4 Comparison with other RG procedures existing
in the field of many-body localization

Since the purpose of the RSRG-X and RSRG-t proce-
dures is to produce an extensive number of LIOMS, it
is clear that their validity is limited to many-body local-
ized phases: they allow to analyse the long-ranged order
of the excited eigenstates and to study the phase transi-
tions between different many-body localized phases. To
analyze the MBL-transition towards the ergodic delo-
calized phase, various other RG procedures have been
introduced, such as the Aoki exact RG procedure in con-
figuration space [190], and real-space RG procedures based
on entanglement [191] or resonances [192,193], while the
phenomenological RG procedure based on the the decom-
position into insulating and thermal blocks [194] is related
to some coarsening models that can be exactly solved by
strong disorder RG (see Appendix E of the review [5]).
An exactly-solvable generalization that takes into account
the asymmetry between insulating and thermal blocks
corresponds to some Kosterlitz–Thouless scenario [195].
Finally, the Wegner-RG flow [196] or variants thereof have
been applied recently to various MBL models [197–201].

7 Floquet dynamics of periodically driven
chains in their localized phases

The Floquet dynamics of periodically driven quantum
systems has attracted a lot of attention recently (see
the reviews [173,202]). The stroboscopic dynamics can
be analyzed via the diagonalization of the time-evolution-
operator over one period T

U(T, 0) ≡ T
(
e−i

∫ T
0 dtH(t)

)
=
N∑
n=1

e−iθn |un〉〈un| . (44)

The phases θn ∈] − π,+π] characterize the eigenvalues
e−iθn of this unitary operator, while the |un〉 are the
corresponding eigenvectors.

To have an explicit evolution operator (instead of the
implicit time ordering of Eq. (44)), it is convenient to con-
sider periodic switching between two HamiltoniansH0 and
H1 during T0 and T1, respectively

U(T = T1 + T0, 0) = e−iT1H1e−iT0H0 . (45)

The simplest example is

H(0 ≤ t ≤ T0) = H0 ≡ −
N−1∑
n=1

Jnσ
z
nσ

z
n+1

H(T0 ≤ t ≤ T = T0 + T1) = H1 ≡ −
N∑
n=1

hnσ
x
n (46)

since the time-averaged Hamiltonian is the random trans-
verse field Ising chain. The RSRG-X rules for the cor-
responding Floquet evolution operator of equation (45)

are analyzed in [203] and can be considered as a direct
generalization of the Fisher RG rules.

More generally, the phase-transitions between different
Floquet-Localized-phases are expected to be controlled by
infinite disorder fixed points that can be sudied via SDRG
[204,205].

8 Open dissipative quantum spin chains

In the field of open quantum systems, the interplay
between quantum coherence and dissipation can be ana-
lyzed within various frameworks [206,207].

8.1 Quantum spin chains coupled to a bath
of quantum oscillators

The dynamics of a single two-level system coupled to a
bath of quantum oscillators is the famous “spin-boson
model” [208]. The generalization for the random quantum
Ising chain is described by the Hamiltonian

Hspins = −
∑
i

hiσ
x
i −

∑
<i,j>

Jijσ
z
i σ

z
j

Hbosons =
∑
i

∑
k

ωi,k

(
a†i,kai,k +

1
2

)
Hcoupling =

∑
i

σzi
∑
k

λi,k

(
a†i,k + ai,k

)
(47)

where each spin is coupled to its own local bath of
oscillators described by its spectral density

Ei(ω) = π
∑
k

λ2
i,kδ(ω − ωi,k) ∝

ω→0
ωs. (48)

The case s = 1 is called Ohmic dissipation, while s > 1 is
called super-Ohmic and s < 1 is called sub-Ohmic.

To obtain the appropriate SDRG rules [209–214], the
idea is to supplement the Fisher SDRG rules of the chain
by the adiabation renormalization of the bath developped
for the spin-boson model [208]. The main conclusion is
the smearing of the quantum phase transition by the dis-
sipation for Ohmic and sub-Ohmic baths, with freezing of
large magnetic clusters, while super-Ohmic is irrelevant.
These predictions have been tested via Monte Carlo sim-
ulations [215]. Related studies based on Landau Ginzburg
functionals can be found in [216–218].

8.2 Lindblad dynamics for random quantum spin
chains

Another popular description of open quantum systems
[206,207] is the Lindblad dynamics for the density
matrix ρ

∂ρ

∂t
= −i[H, ρ] +D[ρ] (49)

where the unitary dynamics governed by the Hamiltonian
H is supplemented by the dissipative contribution defined
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in terms of some set of operators Lα that describe the
interaction with the reservoirs

D[ρ] =
∑
α

γα

(
LαρL

†
α −

1
2
L†αLαρ−

1
2
ρL†αLα

)
. (50)

In the field of quantum spin chains, it is interesting to con-
sider two reservoirs acting only on the two boundary spins
in order to impose a current-carrying non-equilibrium
steady state (NESS).

For the XX chain with random fields, a strong disorder
boundary renormalization has been introduced [219], in
order to describe the strong hierarchy of relaxation times
as a function of the distance to the boundaries, and to
compute explicitely the sample-dependent step-profile of
the magnetization. This step profile is expected in other
localized chains [220], in stark contrast with the usual
linear profile for diffusive dynamics. Note, however, that
the addition of dephasing acting on all spins of the bulk
destroys the phase coherence responsible for the local-
ization properties, and produces an effective dynamics
described by a classical exclusion process with randomness
[221]. Another study concerning the Lindblad dynamics
with a contact between random and pure quantum XX
spin chains can be found in [222].

9 Anderson localization models

In the field of Anderson localization (see the review [223]),
one is interested into the localization/delocalization prop-
erties of the eigenstates of tight-binding Hamiltonian of
the form

H =
∑
i

Hii|i >< i|+
∑
i 6=j

Hij(|i >< j|+ |j >< i|), (51)

that can be defined for various geometries.
The goal of the SDRG [224,225] is to analyze the prop-

erties at zero-energy E = 0 corresponding to the middle
of the spectrum. The iterative elimination of the strongest
on site energy Hii or the strongest off-diagonal hopping
Hij ( in absolute value ) leads to the following decimation
rules. The decimation of the on site energy Ω = |Hi0i0 |
yields the RG rule (even for k = p)

HR
kp = Hkj −

Hki0Hi0p

Hi0i0

(52)

while the decimation of the off-diagonal coupling Ω =
|Hi0j0 | produces the RG rule (even for k = p)

HR
kp = Hkp +

Hi0j0(Hki0Hj0p +Hkj0Hi0p)
H2
i0j0
−Hi0j0Hj0j0

−Hi0i0Hkj0Hj0p +Hj0j0Hki0Hi0p

H2
i0j0
−Hi0j0Hj0j0

. (53)

These SDRG rules actually coincide with the exact Aoki
RG rules at zero-energy E = 0 [226–228]. As a conse-
quence, if one focuses on zero-energy E = 0, the SDRG

rules are exact in both phases (localized and delocal-
ized) as well as at the Anderson phase transition between
them.

The SDRG rules have been applied to analyze the local-
ization properties in d = 1 [224] and d = 2 [228] and
to characterize the critical properties of the Anderson
delocalization transition in d = 3 [225,228,229], while the
application in higher dimensions d > 3 [225,229] points
towards an infinite upper critical dimension dupper = +∞
for the Anderson transition. Note that another SDRG
rules based on the inverse participation ratios of eigen-
states have been proposed in [230], while the effects of rare
resonances on various observables is discussed in [231].

As a final remark, let us mention that several other
real-space renormalization approaches have been intro-
duced to analyze the multifractality of eigenstates at
the localization-delocalization transition in various mod-
els, in particular the Levitov RG reviewed in [223],
the block-RG [232,233] and the Wegner flow approach
[234].

10 Random contact process

The contact process [235,236] is a basic model in the
fields of epidemic spreading and population dynamics. It
is defined on a lattice, the sites of which are either active
(infected) or inactive (healthy). The time evolution is a
continuous-time Markov process with the following inde-
pendent transition rates. Site i, if it is active, becomes
spontaneously inactive with a rate µi or it activates site
j, provided the latter is inactive, with a rate λij . This
model in the simplest case with homogeneous parameters
and nearest-neighbour spreading falls into the universality
class of directed percolation.

In experimental realizations of directed percolation,
quenched disorder is observed to play an inevitable role,
therefore different variants of randomness in the con-
tact process have been studied theoretically. According to
the Harris criterion, quenched disorder (both spatial and
temporal) is a relevant perturbation, therefore new type
of critical bahaviour is expected to be present in these
systems.

10.1 Strong disorder RG rules

The contact process with random short range interac-
tions (both the λij and the µi are i.i.d. random variables)
has been studied by the SDRG method, the basic results
can be found in review [5]. The elementary decimation
steps are the following. Having a very strong activation
rate λij = Ω, the two connected sites form a cluster in
the presence of an effective recovery rate µ̃ = 2µiµj/λij .
On the contrary, for a strong recovery rate µi = Ω, this
site is almost always inactive, and there are effective
branching rates between all sites j, k, which are nearest-
neighbours to i, as λ̃jk = λjiλik/µi. Supplementing this
relation with the maximum rule we arrive to the elemen-
tary decimation rules which are very similar to that of
the RTIM. Indeed, for nearest-neighbour interactions and
for strong enough initial disorder, the extra prefactor is

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 290 Page 15 of 25

unimportant, and the critical behaviour is controlled by
the IDFP of the RTIM. The infinite-randomness scenario
has been checked by large scale Monte Carlo simulations
in d = 2 [237] and in d = 3 [238]. For weaker disorder,
the cross-over between the weak- and the strong disorder
scaling regions is analyzed in [239]. Detailed results on
the distribution of dynamical observables can be found in
[240]. The contact process with asymmetric spreading has
also been studied by SDRG [241]. In dimension d = 5, the
Griffiths singularities are analyzed in [242], as an example
where they can co-exist with a clean critical behaviour
predicted by the Harris criterion [243]. The effects of
long-ranged correlated disorder is studied in [244]. The
contact process on aperiodic chains (instead of random
chains) has been found to display double-logarithmic peri-
odic oscillations via real-space renormalization [245]. The
numerical study of the contact process on complex net-
works has revealed the importance of Griffiths phases and
other rare region effects as a consequence of topological
heterogeneity of the network [246]. Finally, the effect on
random-field disorder on the generalized contact process
has been studied in [247,248].

10.2 Long-range spreading

Spreading of epidemics with long range infections – which
has a power-law distribution – can happen in differ-
ent situations. This type of process can be modelled by
the contact process in which the activation rates are
parametrised as:

λij = Λijr
−(d+σ)
ij , (54)

where rij is the Euclidean distance between site i and
j, and Λij are O(1) i.i.d. quenched random variables,
while the recovery rates µi are also i.i.d. quenched random
variables as before.

The SDRG trajectories have been analysed [249] in the
same way as that of the RTIM with LR interaction of
Section 3. Analytical solution of the primary model in
1D, as well as numerical implementation of the renor-
malization with the maximum rule in 1D and 2D lead
to identical critical scaling behaviour as illustrated in
Figure 2. In the language of the contact process, the fol-
lowing consequences have been obtained. Starting from
a single infected site, the average survival probability
is found to decay as P (t) ∼ t−d/z up to multiplicative
logarithmic corrections. Below the epidemic threshold, a
Griffiths phase emerges, where the dynamical exponent z
varies continuously with the control parameter and tends
to zc = d + σ as the threshold is approached. At the
threshold, the spatial extension of the infected cluster (in
surviving trials) is found to grow as R(t) ∼ t1/zc with
a multiplicative logarithmic correction, and the average
number of infected sites in surviving trials is found to
increase as Ns(t) ∼ (ln t)χ with χ = 2 in one dimension.
These results have been confirmed by numerical Monte
Carlo simulations [249]. We note that on a long-range con-
nected network, the contact process has infinite disorder
criticality [250].

10.3 Temporal disorder

The contact process in time-varying environmental
noise, i.e. temporal disorder, has been considered in
references [251–253]. The system is spatially homoge-
neous, but the (nearest neighbour) activation and recovery
rates are time dependent:

λ(t) = λn, µ(t) = µn (tn < t < tn+1) . (55)

In the mean-field approximation the time evolution of
the density ρ of the active sites follows the differential
equation:

ρ̇(t) = [λ(t)− µ(t)] ρ(t)− λ(t)ρ2(t) , (56)

the solution of which in the interval tn < t < tn+1 for a
given disorder realization is given by:

ρ−1
n+1 = anρ

−1
n + cn . (57)

Here, ρn = ρ(tn), an = exp[(µn−λn)∆t] and the constant
cn = (an − 1)λn/(µn − λn).

The strong disorder (or strong noise) RG consists of
iteratively decimating the weakest spreading and recovery
segments, characterised by a↑i > 1 and a↓i < 1, respec-
tively, and Ω = min(a↑i , 1/a

↓
i ). The decimation equations

are given by: ã↑ = a↑i+1a
↑
i /Ω (for Ω = 1/a↓i ) and 1/ã↓ =

(1/a↓i )(1/a
↓
i−1)/Ω (for Ω = a↑i ), which are equivalent to

those of the RTIM in one dimension. Thus, the critical
behaviour in the mean-field approximation is controlled
by the IDFP of this model.

In finite dimensions the decimation equations are ã↑ =
a↑i+1a

↑
i /Ω (for Ω = 1/a↓i ) and (1/ã↓)1/D = (1/a↓i )

1/D +
(1/a↓i−1)1/D − Ω1/D (for Ω = a↑i ). Here, in the second
equation, one takes into account that in finite dimensions
by decimating Ω = a↑i the radii of the combined active
clusters grows linearly in time. The elementary RG steps
in this case are equivalent to that of the RTIM in one
dimension with long-range interactions, see in Section 3.1
and the RG trajectories are illustrated in Figure 2. The
singular properties of the observables in the contact pro-
cess can be found in [251,253] and numerical calculations
are performed in reference [253].

Temporal disorder at first-order non-equilibrium phase
transitions has been studied in [254]. More generally,
the effect of spatio-temporal disorder on various equi-
librium and nonequilibrium critical points is discussed
in [255].

11 Classical master equations

The stochastic dynamics in random classical models
usually displays a broad continuum of relevant time
scales. The scaling between the characteristic time t
and the linear length L can be either activated with
some exponent ψ characterizing some infinite disorder

https://epjb.epj.org/


Page 16 of 25 Eur. Phys. J. B (2018) 91: 290

fixed point

ln t = Lψ (58)

or power-law with some dynamical exponent z that
may vary continuously as a function of the model
parameters

t = Lz . (59)

The limit z → ∞ corresponds to the activated scaling
(Eq. (58)) of the infinite disorder fixed point, but the
whole region

1 < z < +∞ (60)

can usually be well described by the strong disorder
approximation.

11.1 Real-space renormalization for random walks
in random media

As reviewed in [5], strong disorder RG procedures have
been applied to various models of random walks in ran-
dom media. The main principle is the iterative elimination
of the fastest degree of freedom to obtain the effective
dynamics for the slowest ones. In this field, new develop-
ments since 2005 include one-dimensional random walks
with dilute absorbers [256] or with long-range connections
[257], random walks on strips [258,259] and on arbitrary
networks [260], and in two-dimensional self-affine random
potentials [261].

11.2 RG in configuration-space for the dynamics
of classical many-body models

The real-space SDRG for random walks in random media
has been generalized into the configuration-space SDRG
[262] for any classical master equation governing the
dynamics of the probability Pt(C) to be in configuration
C at time t

dPt (C)
dt

=
∑
C′
Pt (C′)W (C′ → C)− Pt (C)Wout (C) (61)

where W (C′ → C) represents the transition rate per unit
time from configuration C′ to C while

Wout (C) ≡
∑
C′
W (C → C′) (62)

denotes the total exit rate out of configuration C. The
SDRG rule consists in the elimination of the configuration
C∗ with the highest total exit rate Wout(C∗) to obtain
the new renormalized transition rates between surviving
configuration

Wnew(Ci → Cj) = W old(Ci → Cj)

+W old(Ci → C∗)
W old(C∗ → Cj)
Wout(C∗)

(63)

and the new exit rates

Wnew
out (Ci) = W old

out(Ci)

−W old(Ci → C∗)
W old(C∗ → Ci)
Wout(C∗)

. (64)

The physical interpretation of this procedure is as fol-
lows: the time spent in the decimated configuration C∗ is
neglected with respect to the other timescales remaining in
the system; the remaining configurations represents some
‘valleys’ in configuration space that takes into account all
the previously decimated configurations. As a consequence
of the multiplicative structure of the renormalization rule
of equation (63), the renormalized rates W (C → C′) can
rapidly become very small and the appropriate variables
are the logarithms of the transition rates, called ‘barriers’

B(C → C′) ≡ − lnW (C → C′) . (65)

This SDRG procedure has been applied numerically
to interfaces in two-dimensional random media [262–264]
with possibly driving [265]. Note that the idea to elimi-
nate fast degrees of freedom in classical master equations
is very natural and has been thus developed indepen-
dently in many other contexts (see the recent review
[266] and references therein). The SDRG rules above are
actually similar to the exact RG rules concerning first-
passage times [267] where the application to spin-glasses
is discussed.

As a final remark, it is important to stress that for
many-body classical models, the fact that the above RG
rules are defined in configuration space clearly limits the
numerical implementation to small sizes. As a conse-
quence, various other types of real-space RG procedures
have been developed for the dynamics of classical spin
models, in particular boundary-RG for the dynamics in
d = 1 [268] and on the Cayley tree [269] or block-RG
for the dynamics of Long-Ranged ferromagnetic [270] or
spin-glass models [271,272].

12 Random classical oscillators

12.1 Random elastic networks

The model of random masses mi connected by random
springs Kij is one of the oldest problem in the field of
localization of classical disordered models [273]. One is
interested into the Newton equations of motions for the
displacements ui(t)

mi
d2ui
dt2

=
∑
j

Kij(uj − ui) (66)

for various geometries. The issue of the localization prop-
erties of the eigenmodes (phonon localization) is related to
the Anderson localization properties of tight-binding mod-
els discussed in Section 9 even if they are some differences
(see for instance [274] and references therein).
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Various slightly different SDRG rules have been pro-
posed: the idea is to eliminate iteratively either only the
masses [275], or only the couplings [276], or both [277]
as we now describe. One first needs to identify the local
degree of freedom oscillating with the highest frequency.

The frequency Ωi,j associated to the spring Ki,j

between two masses mi and mj is defined by [277]

Ω2
i,j ≡ Ki,j

(
1
mi

+
1
mj

)
(67)

while the frequency Ωi associated with the mass mi

connected to the springs Kij is given by [277]

Ω2
i ≡

1
mi

∑
j

Ki,j . (68)

The renormalization scale Ω is defined as the highest
local frequency remaining in the system among all the
frequencies associated with masses or spring constants.

Ω ≡ max{Ωi,Ωi,j} . (69)

If the highest frequency Ω = Ωi0,j0 is associated with
the spring constant Ki0,j0 , the two masses mi0 and mj0
are replaced by their center of mass G(i0, j0) of mass

mG(i0,j0) = mi0 +mj0 (70)

and the spring constants are replaced by spring constants
linked to their center of mass

Kj,G(i0,j0) = Kj,i0 +Kj,j0 . (71)

This renormalization step thus constructs a cluster of
strongly coupled masses oscillating together.

If the highest frequency Ω = Ωi0 is associated with
the mass i0, the mass mi0 is eliminated, and the spring
constants are renormalized according to

Knew
i,j = Ki,j +

Ki,i0Ki0,j∑
nKi0,n

. (72)

This renormalization step thus constructs an isolated
localized oscillating mode.

These SDRG rules coincide with the exact Aoki RG
rules at zero frequency ω = 0 [277], so they are expected
to remain a good approximation at low frequency.

The SDRG approach has been applied to complex net-
works to analyze their localization properties [275] as well
as to some matrix model in relation with slow relaxation
in glasses [276].

12.2 Synchronisation of interacting non-linear
dissipative classical oscillators

In the field of emergent collective structures in nonequilib-
rium systems, the spontaneous synchronization of inter-
acting nonlinear oscillators is one of the most studied
phenomenon [278–280]. Each oscillator is characterized by

its mass mi and its own frequency ωi, while the interac-
tions between oscillators are described by couplings Kij

that define the geometry of the network of oscillators. The
dynamical equations for the phases θi(t) of the oscillators
are written in the dissipative limit (first-order in time)

mi
dθi
dt

= miωi +
∑
j

Kij sin(θj − θi) . (73)

The aim of the SDRG procedure [281,282] is to con-
struct clusters of frequency-synchronized-oscillators. The
two decimation possibilities are as follows. The decima-
tion of a coupling Kij corresponds to the synchronization
of the two corresponding oscillators and its replacement by
a single renormalized oscillator. The decimation of a fre-
quency ωi means that the corresponding oscillator rotates
freely and does not contribute to the global synchroniza-
tion. The details of the SDRG rules and the numerical
results are described in [281,282].

13 Other classical models

13.1 Equilibrium properties of random systems

SDRG has also been used to analyze the equilibrium phase
transitions of various classical systems, as reviewed in [5],
while more recent applications include the randomly lay-
ered Heisenberg magnet [283], the wetting transition on
the Cayley tree [284], the DNA denaturation transition
[285]. In the field of classical spin-glasses, some SDRG pro-
cedure have been also introduced to study the spin-glass
phase of the long-ranged spin-glass chain [286] or the frac-
tal dimension of interfaces in short-ranged spin-glasses as
a function of the dimension d [287–289].

13.2 Extremes of stochastic processes

As explained in detail in the review [5], SDRG procedures
are closely related to the statistics of extrema of some
random processes associated with the disorder variables:
for instance, the Fisher solution is directly related to the
statistics of extrema of the Brownian motion [21]. Recip-
rocally, the extreme value statistics of various stochastic
processes can be analyzed via SDRG [290] (while the
extreme value statistics of independent variables is ana-
lyzed via RG in the series of works [291–294]). Some
coagulation model with extremal dynamics has been also
studied [295], in relation with previous works reviewed in
Appendix E of [5]).

14 Conclusion

In summary, we have reviewed the new developments of
strong disorder RG methods since 2005. For the quantum
phase transitions of ground states, the critical properties
have been described for short-ranged models in higher
dimensions d > 1 and for long-ranged models. The scal-
ing of the entanglement entropy has been discussed both
for critical ground-states and after quantum quenches. In
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many-body localized phases, we have explained how the
SDRG procedure has been extended into RSRG-X proce-
dure to construct the whole set excited stated and into the
RSRG-t procedure for the unitary dynamics. Other gen-
eralizations of the SDRG approach concern non-isolated
quantum models, namely, periodically driven models
(Floquet dynamics) or dissipative models (coupling to
external baths). We have then focused on the recent
progress for classical disordered models, with the con-
tact process for epidemic spreading, the strong disorder
renormalization procedure for general master equations,
the localization properties of random elastic networks and
the synchronization of interacting non-linear dissipative
oscillators.

In conclusion, SDRG methods have flourished over the
years well beyond their initial scopes, and we thus expect
that they will continue to be developed even further in the
future.
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5. F. Iglói, C. Monthus, Strong disorder RG approach of
random systems, Phys. Rep. 412, 277 (2005)
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186. F. Iglói, G. Roósz, Y.C. Lin, Nonequilibrium quench
dynamics in quantum quasicrystals, New J. Phys. 15,
023036 (2013)

https://epjb.epj.org/
https://arxiv.org/abs/1807.08984
https://doi.org/10.1016/j.crhy.2018.03.003
https://arxiv.org/abs/1804.11065


Eur. Phys. J. B (2018) 91: 290 Page 23 of 25
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