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Abstract. This paper seeks to examine a mathematical model for cryptosporidiosis-HIV co-infection, in
order to explore their synergistic relationship in the presence of prevention and treatment. Firstly, we
investigate the sub-models and their steady states properties. They are found to be locally and globally
stable. Thereafter, the steady states of the co-infected model were studied and they proved to exhibit
backward bifurcation phenomena. Furthermore, we incorporate time-dependent controls in the model and
apply Pontryagin’s maximum principle, so that we can determine the best optimal strategy to control the
co-infected diseases. Finally, we present the numerical results, which show that the best strategy to control
co-infection is to combine all the five controls at the same time.

1 Introduction

In Sub-Saharan Africa, diseases such as trypanosomiasis, schistosomiasis, malaria, etc., already have profound effect
on the immune system and also alter the host’s immune response to infections in HIV/AIDS patients. This in effect
paves the way for opportunistic parasitic infections such as cryptosporidiosis, isosporiasis, microsporidiosis, etc. to
attack [1, 2]. Cryptosporidium species are recognized globally as important causes of diarrhea in children and adults
with major impact on chronic and life-threatening illness in immunocompromised patients, most notably those with
HIV/AIDS [3, 4] especially in sub-Saharan Africa, Europe and Asia. Also, studies carried out in communities and
hospitals in sub-Saharan Africa for instance have documented data on high prevalence of cryptosporidiosis in children
between age 6 to 36 months. In particular, this is very obvious among malnourished or HIV positive humans [4]. A
study carried out by [5] revealed that persons with compromised immune systems can suffer from life-threatening
chronic cryptosporidiosis, especially when their CD4+ lymphocyte counts fall < 200 cells/μL.

In Venezuela, among HIV-infected patients, a study was done to determine the prevalence of cryptosporidiosis
among the patients [6]. One of the major agents that was found to be associated with diarrhea in HIV/AIDS patients
is Cryptosporidium and data evidences abound in the North-western part of Nigeria on the occurrence of this parasite
among HIV patients [7]. The authors also found out that the rate is significantly higher among HIV-infected patients
with diarrhea than among HIV negative with diarrhea. While in Cameroon, the authors in [8] conducted a study
to determine the prevalence of intestinal parasites in HIV/AIDS patients in the Dschang-Cameroon region. In poor
hygienic environment, HIV positive individuals are found to be more susceptible to co-infections with Cryptosporidium
than HIV-negative humans, according to the findings in [9, 10].

Nevertheless, HIV infection has become a major health concern in the rural areas of central China and globally,
which is mainly due to blood collected or supplied illegally. The co-infection of HIV and gastro-intestinal parasites
(Cryptosporidium) form one of the major neglected areas all over the world [11]. Further studies have revealed that
the co-infection of HIV disease and Cryptosporidium parasites often leads to deterioration of the two diseases in
patients. The fact remains that the presence of parasite infection can lead to the destruction of the anti-HIV immune
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response balance, which then eventually results to HIV viral replication and consequently accelerates the progression
of patients from HIV to full blown AIDS [12, 13]. Also, in China, opportunistic parasites, such as Cryptosporidium
parvum, Cyclo sporacayetanesis, Isospora belli, and Microsporidium sp, have their presence documented in patients
with AIDS [14] living in villages with poor sanitation. As a result, the authors in [11, 15] carried out epidemiological
studies to examine the characteristics of co-infection of HIV and intestinal parasites in a HIV/AIDS highly endemic
area in China.

Therefore, the prevalence and magnitude of cryptosporidiosis parasitic infection in patients with HIV/AIDS, re-
quires careful consideration in the developing world where poor nutrition is combined with poor hygiene and other
several tropical diseases. However, to the best of our knowledge, there have been no mathematical modelling studies
carried out to address this issue.

This parasitic disease called Cryptosporidium, is a pathogen which causes cryptosporidiosis in mammals intestines.
This disease was first reported by Clarke and Tyzzer [16]. From 1976 to 1982 seven major outbreaks were recorded. In
the developed economy, one of the most common waterborne diseases is cryptosporidiosis, particularly in the United
States. It is mostly referred to as crypto which in Greek means hidden. The application of alcohol gels and hand
sanitizers does not destroy the pathogen. In most swimming pools chlorine is applied to kill germs and this does
not kill crypto. The occurrence is usually attributed to recreational and drinking purpose of water use. It is greatly
transmittable if left untreated [17–19]. It can be transmitted via contact with an infected person and one can also be
re-infected [20, 21]. The frequent way of transmitting the disease is normally by swallowing the organisms from food
and water, or body contact with an infected individual.

The disease spread thrives more during the summer and fall and children below the age of ten years are generally
affected. Another interesting thing about cryptosporidiosis is that it weakens the immune system, thereby facilitating
the spread of the disease [22]. This accounts for the fact that people who have HIV/AIDS become victims of circum-
stances. People begin to feel the disease in their body system from 2 to 10 days after effectively getting in contact
with an infected body. A study on 58 patients conducted in 1984 showed that 40 (69%) were immunocompromised
and this is common with HIV/AIDS patients [17, 23, 24]. Symptoms commonly associated with the disease include
dehydration, nausea, vomiting, fever and weight loss, diarrhea, stomach cramps. It is difficult and time consuming to
diagnose the pathogens since they are very tiny even under the microscope and several stool tests must be carried out
to confirm the pathogen.

In studies worldwide, Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS)
are projected to spread at the rate of 7000 per day [25]. This is alarming and very dangerous to human existence,
particularly in sub-Saharan Africa where standard health care policies are a major challenge. In the last 3 decades
HIV has killed more than 30 million people [26]. One serious concern about the disease is that it affects mostly the
youth who constitute the working population. The social and economic burden of HIV/AIDS cannot be quantified
in many of the affected communities. Therefore, serious attention should be focussed on preventing co-infection with
other pathogens in order to avoid further weakening of HIV/AIDS patients immune systems. Hence, mathematical
models provide a quantitative and potentially valuable tool for this purpose.

In recent times, mathematical modelling has gained recognition as a tool for exploring the dynamics of diseases
and helping in the formulation of appropriate interventions and control strategies [27]. For example, the impact of HIV
prevention on the epidemic in recent years has been investigated by several researchers [28–30]. The potential effects
of educational campaigns on HIV/AIDS transmission dynamics have also been extensively investigated in [31–33].
There have been other several mathematical modelling studies on HIV-AIDS and other related diseases carried out to
explore the probable burden of the epidemic on the society [27, 31, 32, 34–39]. There is, however, scanty information
about mathematical models on cryptosporidiosis. To the best of our knowledge there is no co-infection model on
cryptosporidiosis and HIV-AIDS and, therefore, this study is to present a better insight into the co-dynamics of these
diseases.

This paper presents an SIR (susceptible, infected, recovered) HIV/AIDS-cryptosporidiosis co-infection model. The
paper is arranged as follows: In sect. 2, the model formulation and principles underlying assumptions are presented.
The analysis of the cryptosporidiosis model only is presented in sect. 3. In sect. 4, HIV/AIDS model only is analyzed.
The analysis of the co-infection model is presented in sect. 5. Section 6 is devoted to the optimal control analysis of
the co-infection model. In sect. 7, the numerical results and discussions are presented. The conclusion is presented in
sect. 8.

2 Mathematical model

The model sub-divides the total human population, denoted by N , into sub-populations of susceptible individuals (S),
individuals with cryptosporidiosis only (I), recovered individuals from cryptosporidiosis only (R), individuals with
HIV only (H), individuals with AIDS only (A), individuals with HIV-AIDS and cryptosporidiosis co-infection (CHI).
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So that N = S + I + R + H + A + CHI .
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

S = Λ + σR − μS − β∗
c S − β∗

HS,

d
dt

I = β∗
c S − (α + μ + ψ)I − β∗

HI,

d
dt

R = αI − (μ + σ)R − β∗
HR,

d
dt

En = θI + δCHI − νEn,

d
dt

H = β∗
H(S + R) − (αa + μ + ψ2)H − β∗

c H + (1 − r)γCHI ,

d
dt

A = αaH − (μ + ψ2)A − β∗
c A + rγCHI ,

d
dt

CHI = β∗
c (H + A) + β∗

HI − (μ + γ)CHI ,

(1)

where

β∗
c =

λεI

S + I + R + H + A + CHI
+ ρEn,

β∗
H =

λ1ε1(H + A + gCHI)
S + I + R + H + A + CHI

.

Also, we have the environmental contamination denoted by En, the contact rate is denoted by ε while λ is the
transmission probability. The parameter ψ, is cryptosporidiosis related death, and θ is the average contribution of
each cryptosporidiosis infected individual to the environment. The rate at which crypto leaves the environment is
represented by ν, and ψ2 is for HIV/AIDS related death. The rate at which HIV infected humans move into AIDS
is denoted by αa, and the immunity waning rate is σ, while α is the recovery rate. Also, human recruitment rate is
denoted by Λ, while μ is the human mortality rate and ρ is the modification parameter due to environmental treatment.

3 Model analysis

3.1 Positivity and boundedness of solutions

This section focuses on the basic properties of the solutions of the model, which are integral part of establishing the
stability of the model.

Lemma 1. The equations preserve positivity of solutions.

Proof. In taking human population only into consideration, the vector field in the right hand of system (2) points
to the direction of the boundary of R6

+\{0}. For instance, if A = 0, then A1 = αaH + rγCHI ≥ 0. In a similar way
the same result can be obtained for other parts (variables). For the purpose of illustration we shall dwell on human
population to prove the boundedness of the solutions for the system 2. �
Lemma 2. Each nonnegative solution of model system 2 is bounded in L1-norm.

Proof. By taking human population only into consideration, and let also L1 ∈ L of each nonnegative solution in N is
expressed as max{N(0), Λ/μ}. Therefore, the norm L1 is appropriate for the inequality N1 ≤ Λ−Nμ. Solutions based
on the equation P 1 ≤ Λ − Pμ are deemed monotone increasing and bounded by Λ/μ if P (0) ≤ Λ/μ. They behave as
decreasing monotone and bounded above if we have P (0) ≥ Λ/μ. By the fact that N1 ≤ P 1, the claims follow and in
a similar manner, the rest of model variables can be established to be bounded. �
Corollary 1. The region

Ω =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(S, I,R,H,A,CHI)

∈ R6
+ : N ≤ Λ

μ
,

En ∈ R+ : En ≤ Λ(θ + δ)
μν

.
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3.2 Cryptosporidiosis only model

In this section, we present the cryptosporidiosis only model.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

S = Λ + σR − μS − β∗
c S,

d
dt

I = β∗
c S − (α + μ + ψ)I,

d
dt

R = αI − (μ + σ)R,

d
dt

En = θI − νEn,

(2)

where

β∗
c =

λεI

S + I + R
+ ρEn.

3.3 Stability analysis of cryptosporidiosis DFE

The cryptosporidiosis only model (2) has a disease free equilibrium (DFE), Ec = (S0, 0, 0, 0) = (Λ
μ , 0, 0, 0). The

linear stability of model (2) at Ec can be established using the next generation operator method in Driessche and
Watmough [40]. It follows that the basic reproduction number of the cryptosporidiosis only model (2) denoted by R0c,
can be computed as follows:

F =

⎛

⎝
λε

ρΛ

μ

0 0

⎞

⎠ , V =
(

α + μ + ψ 0
−θ ρ

)

.

Thus, the basic reproduction number R0c of the cryptosporidiosis only model (2) is

R0c =
θΛρ + λμνε

μν(α + μ + ψ)
.

The Jacobian matrix of the cryptosporidiosis only model (2) is stable locally asymptotically if R0c < 1 and it is
unstable if R0c > 1. Hence, we present the following result:

J0c =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ −ελ σ −Λρ

μ

0 −α + ελ − μ − ψ 0
Λρ

μ

0 α −μ − σ 0
0 θ 0 −ν

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

One of the roots of the Jacobian matrix J0c is −μ < 0, for the remaining roots, we give the following characteristics
equation:

λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = (α + μ + ψ) + (μ + σ) + ν − λε,

a2 = (μ + σ)(α + μ + ν + ψ − λε) + ν(α + μ + ψ)(1 −R0c),
a3 = ν(μ + σ)(α + μ + ψ)(1 −R0c).

It can be easily verified that the coefficients in ai > 0, for i = 1, 2, 3 when R0c < 1 and the condition of Routh-Hurtwiz
criteria, ai > 0 for i = 1, 2, 3 and a1a2 > a3. Thus, it follows from Routh-Hurtwiz criteria that the cryptosporidiosis
only model (2) is stable locally asymptotically if R0c < 1.
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3.4 Existence of endemic equilibrium of cryptosporidiosis

The endemic equilibrium of the cryptosporidiosis only model (2), denoted by E∗
c = (S∗, I∗, R∗, E∗

n) is given by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S∗ =
N∗ν(α + μ + ψ)

N∗θρ + λνε
,

R∗ =
αI∗

μ + σ
,

E∗
n =

θI∗

ν
.

3.5 The possible existence of backward bifurcation in cryptosporidiosis only model

The phenomenon of backward bifurcation can be proved by using the centre manifold theory on the cryptosporidiosis
only model (2). Adopting the centre manifold theorem [41], we carry out bifurcation analysis. In order to apply
the centre manifold theory, we made the following rearrangement and modification of variables in (2). First, we let
x1 = S, x2 = I, x3 = R and x4 = En and β∗

c = λεx2/(x1 + x2 + x3) + ρx4. In addition, by using the vector notation
X = (x1, x2, x3, x4)T , the cryptosporidiosis only model (2) can be formulated as (dX/dt) = (f1, f2, f3, f4)T , given in
the following and we choose λ as the bifurcation parameter and solve R0c = 1 which leads to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= Λ + σx3 − μx1 − β∗

c x1,

dx2

dt
= β∗

c x1 − (α + μ + ψ)x2,

dx3

dt
= αx2 − (μ + σ)x3,

dx4

dt
= θx2 − νx4,

(3)

where

λ = λ∗ =
μν(α + μ + ψ) − θΛρ

μνε
.

The Jacobian matrix evaluated at disease-free equilibrium Ec with λ is

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ −μν(α + μ + ψ) − θΛρ

μν
σ −Λρ

μ

0 −α − μ − ψ +
μν(α + μ + ψ) − θΛρ

μν
0

Λρ

μ

0 α −μ − σ 0
0 θ 0 −ν

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It can be simply observed that the Jacobian F of the linearized system possesses a simple zero eigenvalue and the rest
of the eigenvalues have negative real parts. Therefore, the center manifold theory is appropriate to be used to analyze
the dynamics of the system (3). For the case when R0c = 1, it can be shown that the Jacobian matrix F has a right
eigenvector (corresponding to the zero eigenvalue), expressed as W = (w1, w2, w3, w4)T as

w1 = −αμ + w2(μ + σ)(μ + ψ)
μ(μ + σ)

, w2 = w2 > 0,

w3 =
αw2

μ + σ
, w4 =

θw2

ν
.

Similarly, the left eigenvector F can be computed (corresponding to the zero eigenvalue), represented as v =
(v1, v2, v3, v4) given by

v1 = 0, v2 = v2 > 0,

v3 = 0, v4 =
Λρv2

μν
.
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The computation of a is therefore based on the transformed system (3), the corresponding non-zero partial derivatives
of f (evaluated at the DFE) which we require in the determination of a are given by

∂2f2

∂x2∂x2
= −2Λλε

μ
,

∂2f2

∂x2∂x3
= −2ΛλεΛ

μ
,

∂2f2

∂x1∂x4
= ρ,

∂2f2

∂x2∂ε
=

λΛ

μ
,

∂2f2

∂x3∂ε
=

λΛ

μ
.

The straight calculation of a is

a = −
2Λλεv2w2

(
− μρw2

ΛλεΛ + w2 + w3

)

μ
.

The straight calculation of b is

b =
λΛv2(w2 + w3)

μ
.

The fact that coefficient b is positive shows that the sign of the coefficient a determines the local dynamics around the
disease-free equilibrium for λ.

3.6 Global stability of cryptosporidiosis

In this section, we investigate the global stability of the cryptosporidiosis only model (2) at E∗
0c. Before proving the

result, the cryptosporidiosis only model (2) has a steady state, which is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Λ = −σR∗ + μS∗ + β∗
c S∗,

β∗
c S∗ = (α + μ + ψ)I∗,

αI∗ = (μ + σ)R∗,

θI∗ = νE∗
n.

Now, we state and prove the following theorem

Theorem 1. If R0c > 1, then the endemic equilibrium of the cryptosporidiosis only model (2) at E∗
0c is globally asymp-

totically stable.

Proof. Let us define the Lyapunov function

L(t) = S − S∗ − S∗ log
S

S∗ + I − I∗ − I∗ log
I

I∗
+

β∗
c S∗

αI∗

(

R − R∗ − R∗ log
R

R∗

)

+
β∗

c S∗

θI∗

(

En − E∗
n − E∗

n log
En

E∗
n

)

. (4)

The time derivative of L(t) is

L′(t) =
(

1 − S∗

S

)

S′ +
(

1 − I∗

I

)

I ′ +
β∗

c S∗

αI∗

(

1 − R∗

R

)

R′

+
β∗

c S∗

θI∗

(

1 − E∗
n

En

)

E′
n. (5)



Eur. Phys. J. Plus (2017) 132: 363 Page 7 of 25

Now
(

1 − S∗

S

)

S′ =
(

1 − S∗

S

)

[Λ + σR − μS − β∗
c S]

=
(

1 − S∗

S

)

[−σR∗ + μS∗ + β∗
c S∗ + σR − μS − β∗

c S]

≤ −σR∗
(

1 − S∗

S

)(

1 − R

R∗

)

+ β∗
c S∗

(

2 − S∗

S
− S

S∗

)

, (6)

(

1 − I∗

I

)

I ′ =
(

1 − I∗

I

)

[β∗
c S − (α + μ + ψ)I]

=
(

1 − I∗

I

)[

β∗
c S − β∗

c S∗

I∗
I

]

= β∗
c S∗

(

1 − I

I∗
+

S

S∗ − SI∗

IS∗

)

, (7)

β∗
c S∗

αI∗

(

1 − R∗

R

)

R′ =
β∗

c S∗

αI∗

(

1 − R∗

R

)

[αI − (μ + σ)R]

=
β∗

c S∗

I∗

(

1 − R∗

R

)[

I − I∗

R∗R

]

= β∗
c S∗

(

1 − R

R∗ +
I

I∗
− R∗I

RI∗

)

(8)

and

β∗
c S∗

θI∗

(

1 − E∗
n

En

)

E′
n =

β∗
c S∗

θI∗

(

1 − E∗
n

En

)

[θI − νEn]

=
β∗

c S∗

θI∗

(

1 − E∗
n

En

)

[θI − νEn]

= β∗
c S∗

(

1 − E∗
n

En
+

I

I∗
− IE∗

n

EnI∗

)

. (9)

The results from (6)–(9) by substituting in (5), and simplifying, are

L′(t) = −σR∗
(

1 − S∗

S

)(

1 − R

R∗

)

+ β∗
c S∗

(

4 − S∗

S
− R

R∗ − SI∗

S∗I
− En

E∗
n

− IE∗
n

EnI∗
− I

I∗

(
R

R∗ − 1
))

≤ 0.

4 HIV/AIDS model

In this section, we present the HIV/AIDS only model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d
dt

S = Λ − μS − β∗
HS,

d
dt

H = β∗
HS − (αa + μ + ψ2)H,

d
dt

A = αaH − (μ + ψ2)A,

(10)

where

β∗
H =

λ1ε1(H + A)
S + H + A

.
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4.1 Stability of the HIV/AIDS DFE

The HIV/AIDS only model (10) has a disease free equilibrium, given by

EH = (S0, 0, 0) =
(

Λ

μ
, 0, 0

)

.

The linear stability of model (10) at EH is established using the next generation operator method in Driessche and
Watmough [40]. It follows that the basic reproduction number of the HIV/AIDS only model (10) denoted by R0H ,
can be computed as follows:

F =

(
λ1ε1 λ1ε1

0 0

)

,

V =

(
(αa + μ + ψ2) 0

−αa (μ + ψ2)

)

.

Thus, the basic reproduction number R0H of the HIV/AIDS only model (10) is

R0H =
λ1ε1

(μ + ψ2)
.

The Jacobian matrix of the HIV/AIDS only model (10) is stable locally asymptotically if R0H < 1 and it is
unstable when R0H > 1.

J0H =

⎛

⎜
⎝

−μ −ε1λ1 −ε1λ1

0 −(μ + αa + ψ2) + ε1λ1 ε1λ1

0 αa −μ − ψ2

⎞

⎟
⎠ .

The characteristics equation associated to J0H is

(λ + μ)[λ2 + b1λ + b2] = 0,

where

b1 = (αa + μ + ψ2) + (μ + ψ2) (1 −R0H),

b2 = ((μ + ψ2) (αa + μ + ψ2))(1 −R0H).

One of the roots in the characteristics equation is clearly negative (−μ < 0) and the other two roots can be obtained
from the quadratic terms. It is obvious that the quadratic equation will give two eigenvalues with a negative real part
if R0H < 1. Thus, the HIV/AIDS only model (10) at EH0 is stable locally asymptotically if R0H < 1.

4.2 Existence of endemic equilibrium of HIV/AIDS model

The endemic equilibrium of the HIV/AIDS only model (10) at EH0, denoted by E∗
H = (S∗,H∗, A∗) is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S∗ =
(αa + μ + ψ2)H∗

β∗
H

,

H∗ =
(μ + ψ2)A∗

αa
.

4.3 Possible existence of backward bifurcation in HIV/AIDS only model

The phenomenon of backward bifurcation can be proved using the centre manifold theory on HIV/AIDS only
model (10). Adopting the centre manifold theorem [41], we carry out bifurcation analysis. In order to apply the
centre manifold theory, the following rearrangement and modification of variables are necessary to be made to the
HIV/AIDS only model (10). First, we let x1 = S, x2 = H and x3 = A and β∗

H = λ1ε1(x2 + x3)/(x1 + x2 + x3).
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In addition, by using the vector notation X = (x1, x2, x3)T the HIV/AIDS only model (10) can be formulated as
(dX/dt) = (f1, f2, f3)T given in the following and we choose λ as the bifurcation parameter and solve R0H = 1 which
leads to ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1

dt
= Λ − μx1 − β∗

Hx1 : f1,

dx2

dt
= β∗

Hx1 − (αa + μ + ψ2)x2 : f2,

dx3

dt
= αax2 − (μ + ψ2)x3 : f3,

(11)

where
λ1 = λ∗

1 =
μ + ψ2

ε1
.

The Jacobian matrix evaluated at disease-free equilibrium E0H with λ1 is

F =

⎛

⎜
⎝

−μ −μ − ψ2 −μ − ψ2

0 −αa μ + ψ2

0 αa −μ − ψ2

⎞

⎟
⎠ .

It can be simply observed that the Jacobian F of the linearized system possesses a simple zero eigenvalue and the
rest of the eigenvalues have negative real parts. Therefore, the centre manifold theory is appropriate to analyze the
dynamics of the system (11). For the case when R0H = 1, it can be shown that the Jacobian matrix F has a right
eigenvector (corresponding to the zero eigenvalue) expressed as W = (w1, w2, w3)T as

w1 = −w2(αa + μ + ψ2)
μ

, w2 = w2 > 0, w3 =
w2αa

μ + ψ2
.

Similiarly, the left eigenvector F can be computed (corresponding to the zero eigenvalue), represented as V = [v1, v2, v3]
given by

v1 = 0, v3 = v2 > 0.

The computation of a is therefore based on the transformed system (11), the corresponding non-zero partial derivatives
of f (evaluated at the DFE) which we require in the determination of a are given by

∂2f2

∂x2∂x2
= −2λ1Λε1

μ
,

∂2f2

∂x3∂x3
= −2λ1Λε1

μ
,

∂2f2

∂x2∂x3
= −2λ1Λε1

μ
,

∂2f2

∂x2∂ε1
=

λ1Λ

μ
,

∂2f2

∂x3∂ε1
=

λ1Λ

μ
.

The straight calculation of value a indicates that

a = −v2(w2w2 + w3w2 + w3w3)(2λ1Λε1)
μ

.

The computation of b is calculated as follows:

b =
v2(w2 + w3)(λ1Λ)

μ
.

The coefficient b is clearly positive, the sign of a is strictly negative. There exists a unique endemic equilibrium.

4.4 Global stability of HIV/AIDS model only

In this section, we investigate the global stability of HIV/AIDS only model (10) at E∗
H0. Having the following steady

states: ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Λ = μS∗ + β∗
HS∗,

β∗
HS∗ = (αa + μ + ψ2)H∗,

αaH∗ = (μ + ψ2)A∗,

β∗
HS∗ =

(αa + μ + ψ2)(μ + ψ2)A∗

αa
,

we obtain the following results.



Page 10 of 25 Eur. Phys. J. Plus (2017) 132: 363

Theorem 2. The HIV/AIDS only model (10) at E∗
H0 is globally asymptotically stable if R0H > 1.

Proof. We define the Lyapunov function given by

L(t) = S − S∗ − S∗ log
S

S∗ + H − H∗ − H∗ log
H

H∗ + A − A∗ − A∗ log
A

A∗ . (12)

The time derivative of L(t) is

L′(t) =
(

1 − S∗

S

)

S′ +
(

1 − H∗

H

)

H ′ +
(

1 − A∗

A

)

A′. (13)

Here,
(

1 − S∗

S

)

S′ =
(

1 − S∗

S

)

[Λ − μS − β∗
HS]

=
(

1 − S∗

S

)

[μS∗ + β∗
HS∗ − μS − β∗

HS]

= μ

(

1 − S∗

S

)

(S∗ − S) + β∗
HS∗

(

1 − S∗

S

) (

1 − S

S∗

)

≤ β∗
HS∗

(

2 − S∗

S
− S

S∗

)

, (14)

(

1 − H∗

H

)

H ′ =
(

1 − H∗

H

)

[β∗
HS − (αa + μ + ψ2)H]

=
(

1 − H∗

H

)[

β∗
HS − β∗

HS∗

H∗ H

]

= β∗
HS∗

(

1 − H

H∗ +
S

S∗ − SH∗

HS∗

)

(15)

and

β∗
HS∗

αaH∗

(

1 − A∗

A

)

A′ =
β∗

HS∗

αaH∗

(

1 − A∗

A

)

[αaH − (μ + ψ2)A]

=
β∗

HS∗

αaH∗

(

1 − A∗

A

)[

H − (μ + ψ2)
αa

A

]

=
β∗

HS∗

H∗

(

1 − A∗

A

)[

H − H∗

A∗ A

]

= β∗
HS∗

(

1 − A

A∗ +
H

H∗ − A∗H

AH∗

)

. (16)

Using eqs. (14)–(16) in eq. (13), and simplifying, we obtain

L′(t) = β∗
HS∗

(

4 − A

A∗ − S∗

S
− SH∗

S∗H
− A∗H

AH∗

)

≤ 0.

5 HIV-AIDS cryptosporidiosis co-infection model

The HIV-AIDS cryptosporidiosis co-infection model (1) has a DFE obtained by setting the right-hand sides of the
equations in the model to zero. We have

E0HC

(
S0, 0, 0, 0, 0, 0

)
=

(
Λ

μ
, 0, 0, 0, 0, 0, 0

)

.
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The linear stability of E0HC can be established using the next generation operator method presented in Driessche
and Watmough [40] on the system (1). It follows that the reproduction number of the HIV/AIDS-cryptosporidiosis
co-infection model (1), denoted by R0Hc, is given by

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ελ
Λρ

μ
0 0 0

0 0 0 0 0
0 0 ε1λ1 ε1λ1 gε1λ1

0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α + μ + ψ 0
με1λ1

Λ
0 0

−θ ν 0 0 −δ

0 0 μ + αa + ψ2 0 −(1 − r)γ
0 0 −αa μ + ψ2 −rγ

0 0 0 0 γ + μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

So

R0 = max(R0H ,R0c) = max
{

λ1ε1
μ + ψ2

,
θΛρ + λμνε

μν(α + μ + ψ)

}

,

J0Hc =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ −ελ σ −Λρ

μ
−ε1λ1 −ε1λ1 −gε1λ1

0 −α + ελ − μ − ψ 0
Λρ

μ
0 0 0

0 α −μ − σ 0 0 0 0
0 θ 0 −ν 0 0 δ

0 0 0 0 −μ − αa + ε1λ1 − ψ2 ε1λ1 (1 − r)γ + gε1λ1

0 0 0 0 αa −μ − ψ2 rγ

0 0 0 0 0 0 −γ − μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The two eigenvalues −μ, −(γ +μ) and −(μ+σ) are clearly negative. The remaining four eigenvalues can be computed
from the following equation:

λ4 + c1λ
3 + c2λ

2 + c3λ + c4 = 0, (17)
where

c1 = αa + (α + μ + ψ) + (γ + μ) + μ + ν − λε + ψ2 + (μ + ψ2) (1 −R0H),
c2 = (μ(α + μ + ν + ψ) + ψ2(α + μ + ν + ψ) − λε)(1 −R0H) + ν(α + μ + ψ)(1 −R0c),
c3 = ν(α + μ + ψ)[(αa + μ + ψ2) + (1 −R0H) (μ + ψ2)](1 −R0c)

+ (αa + μ + ψ2) (α + μ + ν + ψ − λε) (μ + ψ2) (1 −R0H),
c4 = (μ + ψ2) (α + μ + ψ) (αa + μ + ψ2) (1 −R0H)(1 −R0c).

The eigenvalues of the characteristics equation (17) will give four eigenvalues with negative real parts if this satisfies
the Routh-Hurtwiz criteria [42], such that ci > 0 for i = 1, 2, 3, 4, with c1c2c3 > c2

3 + c2
1c4. We can easily obtain that

ci > 0 for i = 1, 2, 3, 4, when R0c < 1, R0H < 1, and R0 < 1. It is clear that R0 is the maximum of R0c and R0H ,
i.e., R0c < R0 < 1 and R0H < R0 < 1. Thus, it follows from [42] that the HIV-AIDS cryptosporidiosis co-infection
model (1) is stable locally asymptotically at E0HC .

5.1 The possible existence of backward bifurcation in co-infection of HIV-AIDS and cryptosporidiosis

The phenomenon of backward bifurcation can be shown using the concept of the centre manifold theory on sys-
tem (1). Using the centre manifold theorem we undertake bifurcation analysis. Initially, we take into consideration the
transmission rate R0c = 1 and R0H = 1 if and only if

λ = λ∗ =
μν(α + μ + ψ) − θΛρ

μνε
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and
λ1 = λ∗

1 =
μ + ψ2

ε1
.

The following necessary variations of the variables are made S = x1, I = x2, R = x3, En = x4, H = x5, A = x6 and
CHI = x7 and N = x1 +x2 +x3 +x5 +x6 +x7. Furthermore, employing vector notation �x = (x1, x2, x3, x4, x5, x6, x7),
the HIV-AIDS cryptosporidiosis co-infection model (1) can be reformulated in the form dx/dt = F�x, with F =
(f1, f2, f3, f4, f5, f6, f7)T as given below

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= Λ + σx3 − μx1 − β∗

c x1 − β∗
Hx1,

dx2

dt
= β∗

c x1 − (α + μ + ψ)x2 − β∗
Hx2,

dx3

dt
= αx2 − (μ + σ)x3 − β∗

Hx3,

dx4

dt
= θx2 + δx7 − νx4,

dx5

dt
= β∗

H(x1 + x3) − (αa + μ + ψ2)x5 − β∗
c x5 + (1 − r)γx7,

dx6

dt
= αax5 − (μ + ψ2)x6 − β∗

c x6 + rγx7,

dx7

dt
= β∗

c (x5 + x6) + β∗
Hx2 − (μ + γ)x7,

(18)

where

β∗
c =

λεx2

x1 + x2 + x3 + x5 + x6 + x7
+ ρx4,

β∗
H =

λ1ε1(x5 + x6 + gx7)
x1 + x2 + x3 + x5 + x6 + x7

.

This technique has to do with the evaluation of the Jacobian of the system (18) at the E0HC , represented by JHc.
This turns to be

JHc =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ −J1 σ −Λρ

μ
−(μ + ψ2) −(μ + ψ2) −g (μ + ψ2)

0 J1 − (α + μ + ψ) 0
Λρ

μ
0 0 0

0 α −(μ + σ) 0 0 0 0

0 θ 0 −ν 0 0 δ

0 0 0 0 −αa μ + ψ2 (1 − r)γ + g (μ + ψ2)

0 0 0 0 αa −(μ + ψ2) rγ

0 0 0 0 0 0 −(γ + μ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

J1 =
μν(α + μ + ε) − θΛρ

μν
.

JHc has a simple zero eigenvalue, with other eigenvalues having negative real parts. Hence the centre manifold theorem
can be applied. We initially begin by computing the right and the left eigenvector of JHc, denoted respectively by
�w = [w1, w2, w3, w4, w5, w6, w7]T and �v = [v1, v2, v3, v4, v5, v6, v7]. The following result is then obtained:

w1 = −w6(μ + ψ2)(αa + μ + ψ2)
μαa

, w2 = w3 = w4 = w7 = 0, w6 = w6 > 0,

w5 =
w6(μ + ψ2)

αa
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and

v1 = v2 = v3 = v4 = 0, v6 = v5, v5 = v5 > 0, v7 =
v5(γ + gμ + gψ2)

γ + μ
.

The straight calculation of value a indicates that

a = −v5μλ1ε1(w1w6 + 2w5w5 + 2w5w6 + 2w6w5 + 2w6w6)
Λ

.

The computation of b is calculated as follows:

b =
v5(γ + μ)ε1(w5 + w6)

γ + g(μ + ψ2)
.

The coefficient b is clearly positive, it is the sign of a that will decide about the backward bifurcation of the model.

6 Optimal control analysis

This section seeks to explore the application of Pontryagin’s maximum principle to determine the necessary conditions
for the optimal control of the HIV-AIDS and cryptosporidiosis co-infection. We endeavour to incorporate time depen-
dent controls into the proposed system (19), in order to determine the best optimal strategy which can be employed
to control the diseases. Thus, we have

d
dt

S = Λ + σR − μS − (1 − u1)β∗
c S − (1 − u2)β∗

HS,

d
dt

I = (1 − u1)β∗
c S − (u3α + μ + ψ)I − (1 − u2)β∗

HI,

d
dt

R = u3αI − (μ + σ)R − (1 − u2)β∗
HR,

d
dt

En = θI + δCHI − νEn,

d
dt

H = (1 − u2)β∗
H(S + R) − (u4αα + μ + ψ2)H − (1 − u1)β∗

c H + (1 − u5r)CHI ,

d
dt

A = u4ααH − (μ + ψ2)A − (1 − u1)β∗
c A − u5rγCHI ,

d
dt

CHI = (1 − u1)β∗
c (H + A) + (1 − u2)β∗

HI − (μ + u5γ)CHI . (19)

In this regard, we consider the objective functional

J(u1, u2, u3, u4, u5) =
∫ tf

0

[
a1I + a2H + a3A + a4CHI + Au2

1 + Bu2
2 + Cu2

3 + Du2
4 + Eu2

5

]
. (20)

Our control problem has to do with a situation in which the number of HIVinfections, co-infections, the cryp-
tosporidiosis infected individuals and the cost associated with the application of preventions and treatments controls
u1(t), u2(t), u3(t), u4(t) and u5(t) are minimized subject to the system (19). While tf represents the final time and
the coefficients, a1, a2, a3, a4, a5A, B, C, D, E are the balancing cost factors due to scales and importance of the
ten parts of the objective function. We endeavour to obtain an optimal control, u∗

1, u∗
2, u∗

3, u∗
4 and u∗

5 such that where
U = {(u1, u2, u3, u4, u5), such that u1, u2, u3, u4, u5 are measurable with 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ g2, 0 ≤
u4 ≤ g3 and 0 ≤ u5 ≤ g4, for t ∈ [0, tf ]} is the control set.

1) The control u1(t) and u2(t) denote the efforts targeted at prevention of Cryptosporidiosis and HIV infections
respectively.

2) The treatment control associated with Cryptosporidiosis infected individuals u3(t) satisfies 0 � u3 � g2, where g2

is the drug efficacy used for treatment of Cryptosporidiosis infected individuals.
3) The treatment control targeting on HIV/AID infected individuals u4(t) satisfies 0 � u4 � g3, where g3 is the drug

efficacy used for treatment of HIV/AID infected individuals.
4) The treatment control on Cryptosporidiosis and HIV/AID infected individuals u5(t) satisfies 0 � u5 � g4, where

g4 is the drug efficacy used for treatment of Cryptosporidiosis and HIV/AID infected individuals.
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The critical conditions that an optimal solution must satisfy emanate from the Pontryagin’s et al. [43] maximum
principle. This principle actually transforms (1), (2) into a kind of a problem of minimizing pointwise a Hamiltonian
(H), with respect to u1, u2, u3 and u4. The adjoint variable with regard to the system is denoted by λi, the Hamiltonian
is then expressed as

H = a1I + a2H + a3A + a4CHI + Au2
1 + Bu2

2 + Cu2
3 + Du2

4 + Eu2
5

+ λS{Λ + σR − μS − (1 − u1)β∗
c S − (1 − u2)β∗

HS}
+ λI{(1 − u1)β∗

c S − (u3α + μ + ψ)I − (1 − u2)β∗
HI}

+ λR{u3αI − (μ + σ)R − (1 − u2)β∗
HR}

+ λEn
{θI + δCHI − νEn}

+ λH{(1 − u2)β∗
H(S + R) − (u4αα + μ + ψ2)H − (1 − u1)β∗

c H + (1 − u5r)CHI}
+ λA{u4ααH − (μ + ψ2)A − (1 − u1)β∗

c A − u5rγCHI}
+ λCHI

{(1 − u1)β∗
c (H + A) + (1 − u2)β∗

HI − (μ + u5γ)CHI}, (21)

where λS , λI , λR, λEn
, λH , λA and λCHI

denote the adjoint variables or co-state variables. The system of equations
is attained by taking the desirable partial derivatives of the Hamiltonian (21) with regard to the associated state
variable.

Theorem 3. Given optimal controls u∗
1, u∗

2, u∗
3, u∗

4, u∗
5 and solutions, S, I, R, En, H, A and CHI of the corresponding

state system (5)–(20) that minimize J(u1, u2, u3, u4, u5) over U . Then there exists adjoint variables λS, λI , λR, λEn
,

λH , λA and λCHI
satisfying

−dλi

dt
=

∂H

∂i
, (22)

where i = S, I,R,En,H,A,CHI and with transversality conditions

λS(tf ) = λI(tf ) = λR(tf ) = λEn
(tf ) = λ(tf ) = λ(tf ) = λCHI

(tf ) = 0 (23)

and

u∗
1 = min

{

1,max
(

0,
β∗

c S[λI − λS ] + β∗
c H[λCHI

− λH ] + β∗
c A[λCHI

− λA]
2A

)}

, (24)

u∗
2 = min

{

1,max
(

0,
β∗

HS[λH − λS ] + β∗
HR[λH − λR] + β∗

HI[λCHI
− λI ]

2B

)}

, (25)

u∗
3 = min

{

1,max
(

0,
αI[λI − λR]

2C

)}

, (26)

u∗
4 = min

{

1,max
(

0,
αaH[λH − λA]

2D

)}

, (27)

and

u∗
5 = min

{

1,max
(

0,
rCHI [λH − λCHI

] + CHIrγλA

2E

)}

. (28)

Proof. Corollary 4.1 of [38] presents the existence of an optimal control as a result of the convexity of the integrand
of J with respect to u1, u2, u3, u4 and u5, a priori boundedness of the state solutions and the Lipschitz property of
the state system link to the state variables. The differentiation of the Hamiltonian function computed at the optimal
control leads to differential equations that govern the adjoint variables. The adjoint equations can be formulated as

dλs

dt
=(1−u1)

(
NλεI−λεIS

N2

)

(λS−λI)−ρEnλs+(1−u2)
(

Nλ1ε(H+A+gCHI)−λ1εS(H+A+gCHI)
N2

)

(λS−λH)

+μλS − (1 − u2)
(

Iλ1ε(H + A + gCHI)
N2

)

λI − (1 − u2)
(

Rλ1ε(H + A + gCHI)
N2

)

λR

−(1 − u2)
(

Rλ1ε(H + A + gCHI)
N2

)

λH − (1 − u1)
(

λεIH

N2

)

λH

−(1 − u1)
(

λεIA

N2

)

λA − (1 − u1)
(

λεIH

N2

)

λCHI
− (1 − u1)

(
λεIA

N2

)

λCHI

−(1 − u2)
(

λ1εI(H + A + gCHI)
N2

)

λCHI
+ μλS ,
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dλI

dt
=−a1 + (1 − u1)

(
NλεS − λεIS

N2

)

(λS − λI) − (1 − u2)
(

Sλ1ε(H + A + gCHI)
N2

)

λS

+(1 − u2)
(

Nλ1ε(H + A + gCHI) − λ1εI(H + A + gCHI)
N2

)

λI − (1 − u2)
(

Rλ1ε(H + A + gCHI)
N2

)

λR

+(1−u2)
(

Sλ1ε(H+A+gCHI)
N2

)

λH +(1−u2)
(

Rλ1ε(H+A+gCHI)
N2

)

λH−(1−u1)
(

λεH−λεIH

N2

)

λH−ρEnλI

−(1 − u1)
(

λεA − λεIA

N2

)

λA − (1 − u1)
(

λεH − λεIH

N2

)

λCHI
− (1 − u1)

λεA − λεIA

N2
λCHI

−(1 − u2)
(

Nλ1ε(H + A + gCHI) − λ1εI(H + A + gCHI)
N2

)

λCHI
+ (u3μ + ψ) λI − θλEn

+ α(λI − λR),

dλR

dt
=(σ + μ)λR − (1 − u1)

(
λεIS

N2

)

λS − (1 − u2)
(

Sλ1ε(H + A + gCHI)
N2

)

λS + (1 − u1)
(

λεIS

N2

)

λI

−(1 − u2)
(

λ1Iε(H + A + gCHI)
N2

)

λ1 + (1 − u2)
(

Nλ1ε(H + A + gCHI) − λ1εR(H + A + gCHI)
N2

)

λR

+(1 − u2)
(

Sλ1ε(H + A + gCHI)
N2

)

λH − (1 − u2)
(

Nλ1ε(H + A + gCHI) − λ1εR(H + A + gCHI)
N2

)

λH

−(1 − u1)
(

λεIH

N2

)

λCHI
− (1 − u1)

(
λεIA

N2

)

λCHI
+ (1 − u2)

λ1Iε(H + A + gCHI)
N2

λCHI
,

dλEn

dt
=νλE + ρS(λS − λI) + ρA(λA − λCHI

) + ρH(λH − λCHI
),

dλH

dt
=−a2+(μ+ψ2) λH +u4αa (λH−λA)−(1 − u1)

(
λεIS

N2

)

λS +(1 − u2)
(

Nλ1εS − λ1εS(H + A + gCHI)
N2

)

λS

+(1 − u1)
(

λεIS

N2

)

λI + (1 − u2)
(

Nλ1εI − λ1εI(H + A + gCHI)
N2

)

λI

+(1 − u2)
(

Nλ1εR − λ1εR(H + A + gCHI)
N2

)

λR − (1 − u2)
(

Nλ1εS − λ1εS(H + A + gCHI)
N2

)

λH

−(1 − u2)
(

Nλ1εR − λ1εR(H + A + gCHI)
N2

)

λH − (1 − u1)
(

NλεI − λεIH

N2

)

λH

+ρEnλH − (1 − u1)
(

λεIA

N2

)

λA + (1 − u1)
(

λεIH

N2

)

λCHI
+ (1 − u1)

(
λεIA

N2

)

λCHI

−(1 − u2)
(

Nλ1εI − λ1εI(H + A + gCHI)
N2

)

λCHI
,

dλA

dt
=−a3 + (μ + ψ2) λA − (1 − u1)

(
λεIS

N2

)

λS + (1 − u2)
(

Nλ1εS − λ1εS(H + A + gCHI)
N2

)

λS

+(1 − u1)
(

λεIS

N2

)

λI + (1 − u2)
(

Nλ1εI − λ1εI(H + A + gCHI)
N2

)

λI

+ (1 − u2)
(

Nλ1εR − λ1εR(H + A + gCHI)
N2

)

λR

−(1 − u2)
(

Nλ1εS − λ1εS(H + A + gCHI)
N2

)

λH +ρEnλA−(1 − u2)
(

Nλ1εR − λ1εR(H + A + gCHI)
N2

)

λH

−(1 − u1)
(

λεIH

N2

)

λH − (1 − u1)
(

λεIA

N2

)

λA + (1 − u1)
(

λεIH

N2

)

λCHI

+(1 − u1)
(

λεIA

N2

)

λCHI
− (1 − u2)

(
Nλ1εI − λ1εI(H + A + gCHI)

N2

)

λCHI
,
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dλCHI

dt
=−a4 + u5γ(λCHI

− rλA) − (1 − u1)
(

λεIS

N2

)

λS + (1 − u2)
(

Nλ1εgS − λ1εS(H + A + gCHI)
N2

)

λS

+(1 − u1)
(

λεIS

N2

)

λI + (1 − u2)
(

Nλ1εgI − λ1εI(H + A + gCHI)
N2

)

λI

+ (1 − u2)
(

Nλ1εgR − λ1εR(H + A + gCHI)
N2

)

λR

−(1 − u2)
(

Nλ1εgS − λ1εS(H + A + gCHI)
N2

)

λH − (1 − u2)
(

Nλ1εgR − λ1εR(H + A + gCHI)
N2

)

λH

−(1 − u1)
(

λεIH

N2

)

λH − (1 − u1)
(

λεIA

N2

)

λA

+(1 − u1)
(

λεIH

N2

)

λCHI
+ (1 − u1)

(
λεIA

N2

)

λCHI
− (1 − u2)

(
Nλ1εgI − λ1εI(H + A + gCHI)

N2

)

λCHI

− ρEnλCHI(1−u5r)λA
. (29)

Determining the values for u∗
1, u∗

2, u∗
3, u∗

4 and u∗
5 with respect to the constraints, the characterization (23)–(28) can

be arrived at

0 =
∂H

∂u1
= 2A − β∗

c S[λI − λS ] − β∗
c H[λCHI

− λH ] − β∗
c A[λCHI

− λA],

0 =
∂H

∂u2
= 2B − β∗

HS[λH − λS ] − β∗
HR[λH − λR] − β∗

HI[λCHI
− λI ], (30)

0 =
∂H

∂u3
= 2C − αI[λI − λR],

0 =
∂H

∂u4
= 2D − αaH[λH − λA], (31)

0 =
∂H

∂u5
= 2E − rCHI [λH − λCHI

] − CHIrγλA (32)

and with transversality conditions

λS(tf ) = λI(tf ) = λR(tf ) = λEn
(tf ) = λH(tf ) = λA(tf ) = λCHI

(tf ) = 0. (33)

We therefore obtain (see for example Lenhart and Workman [44])

u∗
1 = min

{

1,max
(

0,
β∗

c S[λI − λS ] + β∗
c H[λCHI

− λH ] + β∗
c A[λCHI

− λA]
2A

)}

,

u∗
2 = min

{

1,max
(

0,
β∗

HS[λH − λS ] + β∗
HR[λH − λR] + β∗

HI[λCHI
− λI ]

2B

)}

,

u∗
3 = min

{

1,max
(

0,
αI[λI − λR]

2C

)}

,

u∗
4 = min

{

1,max
(

0,
αaH[λH − λA]

2D

)}

,

u∗
5 = min

{

1,max
(

0,
rCHI [λH − λCHI

] + CHIrγλA

2E

)}

,

(34)
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by standard control arguments dealing with the bounds on the controls, we get

u∗
i =

⎧
⎪⎨

⎪⎩

0, if ζ∗i ≤ 0,

ζ∗i , if 0 < ζ∗i < 1,

1, if ζ∗i ≥ 1.

For i ∈ 1, 2, 3, 4, 5 and where

ζ∗1 = min
{

1,max
(

0,
β∗

c S[λI − λS ] + β∗
c H[λCHI

− λH ] + β∗
c A[λCHI

− λA]
2A

)}

,

ζ∗2 = min
{

1,max
(

0,
β∗

HS[λH − λS ] + β∗
HR[λH − λR] + β∗

HI[λCHI
− λI ]

2B

)}

,

ζ∗3 = min
{

1,max
(

0,
αI[λI − λR]

2C

)}

,

ζ∗4 = min
{

1,max
(

0,
αaH[λH − λA]

2D

)}

,

ζ∗5 = min
{

1,max
(

0,
rCHI [λH − λCHI

] + CHIrγλA

2E

)}

.

(35)

In the subsequent section, we explore the numerical solutions of the optimality of the proposed model and endeavour
to vary the optimal controls u1, u2, u3, u4 and u5. �

7 Numerical simulations

Here, in this section, we provide detailed discussion of the numerical solutions of the optimality system and the
corresponding results of varying the optimal controls u1, u2, u3, u4 and u5. The parameter selections, as well as giving
the appropriate interpretation from various cases and the numerical simulation solutions, are obtained using MATLAB
version 15.0. The optimality system, which is made up of the state system and its adjoint system, was solved to attain
the optimal control solution. A fourth-order Runge-Kutta iterative scheme is applied to arrive at the solution of the
optimality system. The adjoint equations were solved by employing the backward fourth-order Runge-Kutta scheme
in order to obtain the current solutions of the state equations based on the transversality conditions (23). From the
results arrived at, the controls were updated by using a convex combination of the previous controls and the value
determined from the characterisations. This process was continued to be undertaken and the iterations were ended
if the values of the unknowns at the previous iterations were very close to the ones just achieved at the current
iteration [44,45]. Table 1 depicts the parameter values employed in the numerical simulation of the co-infection model.
The following weight constants were taken into consideration: A = 50, B = 130, C = 100, D = 200, E = 310 and
a1 = 210, a2 = 380, a3 = 400, a4 = 260, a5 = 310.

7.1 Prevention (u1) and treatment (u3) of cryptosporidiosis

The cryptosporidiosis prevention control u1 and the cryptosporidiosis treatment control u3 are used to optimise the
objective function J , at the same time the controls (u2, u4 and u5) are set to zero. Figure 1(a) indicates that the
number of cryptosporidiosis infected humans (I) is significantly different in optimal control cases, compared with
cases without control. This control strategy has a positive effect on reducing the number of infected cryptosporidiosis
humans (I). Figure 1(b) shows the environmental contamination effects and there is a substantial difference between
the controlled cases and those without control. Therefore, it suggests that this strategy is capable of minimizing the
environmental effect (En). In fig. 1(c), the cases without control are higher than the controlled cases in HIV human
infection (H). A similar pattern is observed in fig. 1(d), that is, the cases without control are higher than the control
scenario. It can then be inferred that controlling AIDS infection in humans (A) has nothing to do with controlling
cryptosporidiosis (using prevention and treatment). Figure 1(e) depicts the effect of this strategy on the co-infected
humans (CHI) and there is a relatively significant difference between the cases with control and those without control.
This could be attributable to cryptosporidiosis infected humans since controlling HIV-AIDS cannot be done using this
control strategy.
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Table 1. Description of variables and parameters of the model.

Parameter Description Value Ref.

Λ Human recruitment rate 0.005 day−1 [43]

σ Recovery rate of crypto infected individuals 0.07 day−1 [46]

μ Natural mortality rate in humans 0.00055 day−1 [47]

ψ Average contribution of crypto infected individuals to the environment 0.00095 day−1 [46]

ρ Prob. of infection thro enviro. 0.005 day−1 Assumed

λ Cryptosporidiosis transmission probability rate 0.05 day−1 [46]

θ Cryptosporidiosis infected contribution to the environment 0.7 day−1 [46]

ε Cryptosporidiosis contact rate 0.123 day−1 [46]

ε1 HIV contact rate 0.025 day−1 Assumed

λ1 HIV infection transmission probability rate 0.05 day−1 [43]

αa Rate of progression to AIDS stage 0.000548 day−1 [43]

α Recovery rate from crypto 0.7 day−1 [46]

γ Cholera related death 0.02407 day−1 [48]

ψ Cryptosporidiosis related death 0.02407 day−1 [49]

ν Microbes mortality rate 0.033 day−1 [46]

ψ2 HIV/AIDS related death 0.00913 day−1 [50]

ρ Modification parameter 0.065 day−1 Assumed

r Rate of coinfected humans 0.08 day−1 Assumed

σ Cryptosporidiosis immunity waning rate 0.001 day−1 [46]

g Modification parameter 0.07 day−1 Assumed

7.2 Prevention (u2) and treatment (u4) of HIV-AIDS

The HIV-AIDS prevention control u2 and the HIV treatment control u4 are activated to optimise the objective function
J , while the rest of the controls (u1, u3 and u5) are set to zero. Figure 2(a) shows that the number of cryptosporidiosis
infected humans (I) is significantly different in the optimal control cases, compared to the cases without control. This
strategy of controlling HIV infection in humans (H) virtually has no effect on cryptosporidiosis infected humans (I).
This is anticipated, because controlling each disease requires entirely different strategies. Figure 2(b) depicts that the
case without control is higher than the controlled case. The dynamics of controlling HIV is different compared with
controlling environmental contamination effect En. Figure 2(c) indicates that there is a vast difference between the
controlled case and those without control. The control strategy appears to be effective when dealing with HIV infected
humans (H). A similar pattern can be seen in fig. 2(d) since it requires the same strategy to reduce the number of
infected humans with AIDS (A). Figure 2(e) shows co-infected humans (CHI) and there is little difference between
the controlled cases and those without control. This strategy is effective in minimizing the co-infected humans.

7.3 Cryptosporidiosis and HIV-AIDS preventions (u1) and (u2) only

The cryptosporidiosis and HIV-AIDS prevention control u1 and the control u2 are employed to optimize the objective
function J at the same time as the other controls (treatments) (u3, u4u5) are to zero.

In fig. 3(a), there is a substantial significant difference between the controlled case and the case without control for
cryptosporidiosis infected humans (I). Similarly, in fig. 3(b), the result shows no difference. The strategy is effective to
minimize both cryptosporidiosis and environmental contamination effect. There is a positive impact of this strategy
on controlling HIV (H) as shown in fig. 3(c). Thus, the controlled case and the case without control are significantly
different. The situation in fig. 3(c) is not different from fig. 3(d). This is because the mechanisms required to minimize
the spread of HIV and AIDS are very similar. The co-infected humans (CCH) as shown depict that there is a substantial
difference between the controlled case and the case without control. This strategy is effective in dealing with HIV-AIDS
related disease using prevention strategy during the intervention.
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Fig. 1. Simulations of the model showing the effect of cryptosporidiosis prevention and treatment only on transmission.

7.4 Cryptosporidiosis and HIV-AIDS treatments (u3) and (u4) only

The cryptosporidiosis and HIV-AIDS treatment controls u3 and u4 are explored to optimize the objective function J
while other controls which have something to do with prevention mechanisms (u1, u2 and u5) are set to zero. Figure 4(a)
indicates that there is a vast difference between the controlled case and the case without control in the spread of
cryptosporidiosis (I). There is a relatively little difference between the controlled environmental contamination effect
(En) and the case without control as shown in fig. 4(b). It is obvious in fig. 4(c) that the controlled case and the case
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Fig. 2. Simulations of the model showing the effect of HIV prevention and treatment only on transmission.

without control are significantly different. The negative effect of this strategy in controlling HIV is anticipated since
there is prescribed treatment for this disease. In fig. 4(d), a similar pattern is observed and is not surprising because
there is no cure for AIDS (A). In order to effectively control AIDS (A) there is a need for a more robust strategy to
achieve such a goal. There is virtually no difference between the controlled case for co-infected humans (CHI) and the
case without control as shown in fig. 4(e). The dynamics of the two diseases are entirely different and therefore this
strategy is not effective in controlling the two diseases at the same time.
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Fig. 3. Simulations of the model showing the effect of cryptosporidiosis-HIV prevention only on transmission.

7.5 HIV-AIDS and cryptosporidiosis preventions with treatments (u1, u2, u3, u4, u5)

In this strategy, all the controls are used (u1, u2, u3, u4, u5) in oder to optimize the objective function J . In other
words, the preventions and treatments of cryptosporidiosis and HIV-AIDS are optimized. It is clearly seen in fig. 5(a)
that there is a vast significant difference between the controlled case and the case without control in the spread
of cryptosporidiosis (I). A similar pattern can be observed in fig. 5(b). The positive effect is attributable to the
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Fig. 4. Simulations of the model showing the effect of cryptosporidiosis-HIV treatment only on transmission.

effectiveness of this strategy. There is a substantial difference in the controlled case and the case without control in
fig. 5(c) and a similar situation can be seen in fig. 5(d). The strategy for controlling HIV and AIDS is more effective
in combining both preventive and treatment mechanisms. There is a positive effect on minimizing the number of co-
infected individuals as shown in fig. 5(d). This is clearly because of the combination of both preventive and treatment
mechanism same time.
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Fig. 5. Simulations of the model showing the effect of cryptosporidiosis-HIV prevention and treatment on transmission.

8 Conclusion

In this paper, we examined a co-infection of cryptosporidiosis-HIV/AIDS deterministic model, by incorporating time-
dependent control preventions and treatments. The model basic properties were studied. The sub-models stability
analyses were carried out and proved to be locally and globally stable. The centre manifold technique was employed to
explore the possibility of the presence of the bifurcation phenomenon in the sub-models as well as the co-infected model
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which is found to exhibit backward bifurcation phenomena. Furthermore, we incorporated five controls and explored
different strategies and their effects on the co-infection. From the numerical results, the application of treatment and
prevention of cryptosporidiosis only has no significant impact on reducing HIV-AIDS related problem as shown in
fig. 1. The prevention and treatment of HIV-AIDS only strategy, only drastically reduced the number of HIV infected
humans and however had no effect on cryptosporidiosis infected humans. But, it has relatively positively impacted on
the co-infected humans as shown in fig. 2. The prevention of the two disease same time strategy, resulted in reduction in
all cases, see fig. 3, however, in the case of treatment of both diseases the positive impact was seen in cryptosporidiosis
humans infected and environmental contamination effect with no difference in the co-infected humans, see fig. 4. When
all the controls were optimized, the controlled cases are significantly different from the cases without control. These
strategies in all cases have a positive impact in controlling both diseases in a community, see fig. 5.
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