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Abstract. Here we will consider the finite-size scaling, finite-size corrections and boundary effects for the
critical two-dimensional free-fermion models. A short review of significant achievements and possibilities
is given. However, this review is still far from completeness. We derive the exact finite-size corrections for
the set of free models of statistical mechanics, including Ising model, dimer model, resistor network and
spanning tree model under different boundary conditions. We have shown that the partition functions of
all these models can be written in terms of the only object, namely, the partition function with twisted
boundary conditions.

1 Introduction

It is well known that the singularities in thermodynamic
functions associated with a critical point occur only in
the thermodynamic limit when dimension L of the system
under consideration tends to infinity. In such a limit, the
critical fluctuations are correlated over a distance of the
order of correlation length ξbulk that may be defined as the
length scale governing the exponential decay of correlation
functions. Besides these two fundamental lengths, L and
ξbulk, there is also the microscopic length of interactions a.
Thermodynamic quantities thus may in principle depend
on the dimensionless ratios ξbulk/L and a/L. The finite-
size scaling (FSS) hypothesis [1] assumes that in the scal-
ing interval, for temperatures so close to the critical point
that a� ξbulk ∼ L, the microscopic length drops out and
the behavior of any thermodynamic quantity can be de-
scribed in terms of the universal scaling function of the
scaling variable t = L/ξbulk. However, non-universal cor-
rections to FSS do exist. These sometimes can be viewed
as asymptotic series in powers of a/L.

In the study of phase transitions and critical phe-
nomena, it is extremely important to understand finite-
size corrections to thermodynamical quantities. Finite-size
scaling [1–3] concerns the critical behavior of systems in
which one or more directions are finite, even though mi-
croscopically large and is valuable in the analysis of ex-
perimental and numerical data in many situations, for
example, for films of finite thickness. Finite-size scaling
theory, initiated more than four decades ago by Fisher
and Barber [4] has advanced considerably during the past
decades [2,5,6]. It has been found that critical systems can
be classified into different universality classes so that the
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systems in the same class have the same set of critical
exponents, whose values depends only on the global prop-
erties of the system such as spacial dimensions, number
of components of the order parameter, the range of inter-
action and the symmetry group. The hypothesis of uni-
versality has much stronger implications and it is possible
to show that models belonging to the same universality
class also share the same set of universal finite-size scaling
functions and amplitude ratios, whose values are indepen-
dent of the microscopic structure of interactions. As soon
as one has a finite system one must consider the question
of boundary conditions on the outer surfaces or “walls” of
the system. As is well known, the critical behavior near
boundaries normally differs from the bulk behavior. In
general, each bulk universality class of critical phenomena
splits into several surface universality classes. The sys-
tems under various boundary conditions have the same
per-site free energy in the bulk limit, whereas the finite
size corrections are different. To understand the effects of
boundary conditions on finite-size corrections, it is valu-
able to study model systems, especially those which have
exact results, where the analysis can be carried out with-
out numerical errors such as the Ising model [7–11], the
dimer model [12–14], percolation model [15], the spanning
tree model [16], and resistor network [17]. The exact study
of the model subject to boundary conditions is of funda-
mental importance: (i) first, it represents new challenges
for the unsolved lattice-statistical problems; (ii) second,
it is crucial for the finite-size analysis; (iii) furthermore,
it provides an optimal test bed for the predictions of the
conformal field theory. Therefore, in recent decades there
have many investigations on finite-size scaling, finite-size
corrections and boundary effects for critical model sys-
tems [18–62]. Two-dimensional models of statistical me-
chanics have long served as a proving ground in attempts
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to understand critical behavior and to test the general
ideas of FSS.

In this paper we are going to review the recent exact
studies on finite size and boundary effects for the criti-
cal two-dimensional free-fermion models, including Ising
model, dimer model, spanning tree model and resistor
network model.

2 Finite size corrections and boundary effects
in the critical two-dimensional free-fermion
models

The exact asymptotic expansion of the free energy per
site on an infinite cylinder (strip) of circumference L for
exactly solvable models can easily be obtained by di-
rect application of the Euler-Maclaurin summation for-
mula [33]. However, derivation of such an expansion on
a torus (cylinder or plane) of area S and aspect ratio
ξ is much more difficult problem. For the Ising model
on torus, such an expansion has first been studied by
Ferdinand and Fisher [8]. Exploiting the exactly known
partition function (ZM,N ) of the two dimensional Ising
model on finite M×N square lattice with toroidal bound-
ary conditions [9], they have calculated two leading terms,
fbulk and f0(ξ) in the expansion of the free energy per
site FT=Tc(ξ, S) = − 1

MN lnZM,N . In general, the exact
asymptotic expansion of the free energy per site for the
two-dimensional Ising model on M ×N torus, cylinder or
plane can be written as [23–25]

FT=Tc(ξ, S) = fbulk +
2Nf1s

S
+

2Mf2s

S
+
f0(ξ)
S

+
∞∑

p=1

fp(ξ) S− p
2−1 (1)

where S is the area of the lattice, ξ is the aspect ratio

S = MN, ξ =
M

N
(2)

and f1s, f2s are the free energies per unit edge length in
the horizontal and vertical directions respectively, which
in the case of toroidal boundary conditions are equal
to zero f1s = f2s = 0. In general, the bulk free en-
ergy fbulk, the surface free energies f1s and f2s and sub-
leading correction terms fp(ξ) (p = 1, 2, 3, . . .) are non-
universal, but the coefficient f0 contains universal part
funiv and also non-universal, geometry-independent con-
stant fnonuniv (f0 = funiv + fnonuniv) [63,64]. The univer-
sal part of f0 depend only on the shape of the system
and, possibly, the nature of the boundary conditions. In
the case of the infinitely long strip the coefficient f0 is
universal and is known [18,65] to be related to the con-
formal anomaly number c and conformal weights of the
underlying conformal theory. In the case of free boundary
conditions on the square lattice Cardy and Peschel [66]
have shown that corners on the boundary induce a trace

anomaly in the stress tensor. They predicted that the con-
tribution to the free energy from a corner with angle γ
gives rise to a term in f0 equal to

fcorner =
c

48

(
γ

π
− π

γ

)
lnS (3)

where c is the central charge defining the universality class
of the system and S is the area of the domain. For the
Ising model on a finite triangular lattice on plane with free
boundaries in five shapes: triangular, rhomboid, trapezoid,
hexagonal and rectangular the corner parts of the free en-
ergy, internal energy, and specific heat has been calculated
very accurately in [60,61]. In particular they calculate the
corner free energy for angles γ = π/3, π/2 and 2π/3 and
find that they are in full agreement with conformal field
theory prediction given by equation (3).

For the Ising model on a finite square lattice on plane
with free boundaries in rectangular shapes the corner con-
tribution to free energy fcorner comes from the corners
with angle γ = π/2 and each corner gives rise to a term
in f0 equal to

fcorner = − c

32
lnS, (4)

later on, Imamura et al. study the corner terms with dif-
ferent boundary conditions within CFT [67]. According
to their results, the contribution to the free energy from a
corner with two edges under a and b conformally invariant
boundary conditions is given by

fcorner = −
( c

32
−Δa,b

)
lnS (5)

where Δa,b is the conformal weight of the boundary op-
erator inserted at the corner that changed boundary con-
ditions from a to b. For the Ising model there are three
different conformal weights, namely, Δa,b = 0, 1/16 and
1/2. There are also three different conformally invariant
boundary conditions. Using bond propagation algorithms
with surface fields the Ising model on a finite square lattice
on plane in square shape with different boundary condi-
tions has been studied in [62]. The exact results has been
conjectured for the corner logarithmic term in the free en-
ergy, the internal energy, and the specific heat. The corner
logarithmic terms in the free energy agree with the con-
formal field theory prediction.

Later, Kleban and Vassileva [64] extended the study
of the free energy on a rectangle. They further derived a
geometry-dependent universal part of the free energy in
the rectangular geometry and showed that in addition to
corner contribution predicted by Cardy and Peschel [66],
the term f0 contains also another universal part fu

depending on the aspect ratio

fu =
c

4
ln [η(q)η(q′)] , (6)

where η(q) = q1/24
∏∞

n=1 (1 − qn) is the Dedekind eta
function and q = exp (−2πξ), q′ = exp (−2π/ξ). More-
over, the term f0 contains also non-universal, geometry-
independent constant fnonuniv. Thus the term f0 can be
written as

f0 = funiv + fnonuniv, (7)

http://www.epj.org


Eur. Phys. J. B (2017) 90: 160 Page 3 of 18

where the universal part funiv of the free energy in the
rectangular geometry can be calculated by conformal field
theory methods [64] and given by

funiv = 4fcorner + fu, (8)

while non-universal part fnonuniv of the free energy is not
calculable via the conformal field theory methods. Equa-
tions (4)–(8) applies for any conformally invariant bound-
ary condition around the edge of the rectangle. For the
Ising model on plane the non-universal part fnonuniv of the
free energy has been calculated in [25]. In 2017 Baxter [51]
and Hucht [52,53] has verified the CFT results for the
Ising model in the rectangular geometry by an explicit
calculations.

There has been much effort in understanding the be-
havior of finite-size corrections of the free energy, internal
energy and specific heat. In 1999, Izmailian et al. [26] cal-
culated finite-size corrections for cluster numbers of the q-
state Potts model for q being 1, 2, 3 and 4. In such studies,
they extended the calculations of Ferdinand and Fisher for
the Ising model on torus [8] to higher orders. In 2001 Lu
and Wu [29] find finite-size corrections for free energy of
the Ising model on an quadratic N × N lattice embed-
ded on a Mobius strip and a Klein bottle to order N−1.
In 2002, Izmailian and Hu [44] extended the results of [8]
for the free energy and the internal energy for the Ising
model on torus up to order N−5 and for the specific heat
up to order N−3. In 2002, Janke and Kenna [27] has cal-
culated the finite-size corrections of the specific heat for
the Brascamp-Kunz boundary condition up to N−3 order.
In 2002, Caselle et al. [68] used conformal field theory to
study correction terms for the free energy and its deriva-
tives of the Ising model. In the same year Ivashkevich
et al. [23] provided a systematic method to compute finite-
size corrections to the partition function and their deriva-
tives of the Ising model on torus and derive all terms
in this asymptotic expansion for the Ising model on fi-
nite square lattices with periodic boundary conditions.
Their approach is based on an intimate relation between
the terms of the asymptotic expansion and the so-called
Kronecker’s double series [23] which are directly related to
elliptic theta functions. Using this approach, exact finite-
size corrections for the critical Ising model [24,36,43,45],
the dimer model [46–48,69], the spanning tree [70] and
resistor network [71,72] on planar lattices with various
boundary conditions have been obtained. Besides the aes-
thetic appeal of the exact expansion, there is also physical
motivation to study non-universal corrections to FSS. The
problem is that in numerical simulations of lattice mod-
els one usually studies relatively small lattices. Therefore,
to compare the results of high precision numerical simu-
lations to the theoretical predictions one cannot neglect
sub-leading corrections to FSS [73].

The non-universal finite-size corrections can be calcu-
lated by the means of a perturbated conformal field the-
ory [74,75]. In general, any lattice Hamiltonian (H) will
contain correction terms to the critical Hamiltonian Hc

H = Hc +
∑

p

gp

∫ N/2

−N/2

φp(v)dv,

where gp is a non-universal constant and φp(v) is a per-
turbative conformal field. Then the eigenvalues of H are

En = En,c +
∑

p

gp

∫ N/2

−N/2

φp(v)dv + . . . ,

where En,c are the critical eigenvalues of H . The matrix
element 〈n|φg(v)n〉 can be computed in terms of the uni-
versal structure constants (Cnln) of the operator product
expansion [74]: 〈n|φg(v)n〉 = (2/N)xgCnln, where xg is
the scaling dimension of the conformal field φg(v). Thus,
non-universal terms in the asymptotic expansion also pro-
vide important information about the structure of irrele-
vant operators in conformal field theory [76]. Such studies
inspire further research on finite-size corrections for the
Ising and other exactly solvable models.

The asymptotic expansion for the dimer model has first
been studied by Ferdinand [8]. Starting with the explicit
expression for the partition function [12–14] he calculated
finite-size corrections up to the first order, fbulk, f1s, f2s

and f0(ξ) of the expansion for the free energy of the dimer
model onM×N square lattices with both free and toroidal
boundary conditions for different parities of M and N . It
has been shown that the coefficients f1s, f2s depend on the
type of boundary conditions but independent on the pari-
ties of the number of the lattice sites, M and N , along the
axes and the coefficients f0(ξ) in this expansion are sen-
sitive to the boundary conditions and the parities of the
number of the lattice sites. In 2003 Izmailian et al. [48] has
shown that the asymptotic expansion for the free energy
of the dimer model can be written in the form given by
equation (1) and derive all terms in this asymptotic ex-
pansion for the dimer model on finite square lattices under
five different boundary conditions, namely, free, cylindri-
cal, toroidal, Mobius strip, and Klein bottle. They find
that the aspect-ratio dependence of finite-size corrections
fp(ξ), for p = 0, 1, 2, . . . are sensitive to boundary condi-
tions and the parity of the number of lattice sites along the
lattice axis. In references [46,47] has been found that the
finite-size corrections for the dimer model on the infinitely
long strip under free and periodic boundary conditions de-
pend in a crucial way on the parity of the lattice sites in
the finite directions and show that such unusual finite-size
behavior can be fully explained in the framework of the
c = −2 logarithmic conformal field theory. In the same
year Izmailian and Kenna [69] have analyze the partition
function of the dimer model on an M ×N triangular lat-
tice wrapped on a torus obtained by Fendley et al. [77].
From a finite-size analysis they have found that the dimer
model on such a lattice can be described by a conformal
field theory having a central charge c = −2.

Very recently [70], Izmailian and Kenna using the
method of references [23,78] to derive exact finite-size cor-
rections for the logarithm of the partition function of the
spanning-tree model on the M×N square lattice with five
different sets of boundary conditions in the form given by
equation (1). Except for the bulk free energy fbulk, all
other coefficients in this expansion are sensitive to the
boundary conditions. They also explain an apparent dis-
crepancy between logarithmic correction terms in the free
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energy for a two-dimensional spanning-tree model with pe-
riodic and free-boundary conditions and conformal field
theory predictions [79,80] and have obtained corner free
energy for the spanning tree under free-boundary con-
ditions in full agreement with conformal field theory
predictions.

Using the exact expression for the resistance between
arbitrary two nodes for finite M × N rectangular net-
work obtained in reference [17] and the algorithm of ref-
erence [23], Izmailian and Huang [71] derive the exact
asymptotic expansion for the resistance between two max-
imally separated nodes on an M ×N rectangular network
of resistors under free, periodic and cylindrical boundary
conditions with resistors r and s in the two spatial direc-
tions. They show that the exact asymptotic expansion of
the resistance between two maximally separated nodes of
the network for all boundary conditions can be written as

1
s
RM,N (r, s) = c(ρ) lnS+ c0(ρ, ξ)+

∞∑

p=1

c2p(ρ, ξ) S−p (9)

where S is the area of the lattice and ξ is the aspect ratio
given by equation (2) and ρ is defined as

ρ = r/s. (10)

All coefficients in this expansion depends on the boundary
conditions. Recently, using the same approach Izmailian
and Kenna [72] derive the asymptotic expansions for the
resistance between the center node and a node on the
boundary of the M×N cobweb network of resistors, which
can be written in the form given by equation (9).

2.1 Ising models on the square lattice under different
boundary conditions

In this section, we will consider Ising model under dif-
ferent boundary conditions, namely on torus with peri-
odic and helical boundary conditions and on the cylin-
der with Branskamp-Kunz boundary conditions. Partition
functions of all these models can be written in terms of the
only object, namely, the partition function with twisted
boundary conditions Zα,β(M,N, μ, d). We will derive the
exact asymptotic expansion of the free energy, internal
energy and specific heat for Ising model under different
boundary conditions at the critical point μ = 0.

The Ising model is defined on a lattice G of Ns sites,
the ith site of the lattice for 1 ≤ i ≤ Ns is assigned a
classical spin variable si, which has values ±1. The spins
interact according to the Hamiltonian

βH = −J
∑

<ij>

sisj (11)

where J is exchange energy, the sum runs over the nearest
neighbor pairs of spins, and β = 1/kBT is the inverse
temperature. The partition function of the Ising model is

given by the sum over all spin configurations on the M×N
lattice

ZIsing
M,N (J) =

∑

s

e−βH(s). (12)

It is convenient to set up another parameterizations of the
interaction constant J in terms of the mass variable μ

μ = ln
√

sinh (2J). (13)

Critical point corresponds to the massless case μ = μc = 0.

2.1.1 Ising model under helical boundary conditions

Let us start with the Ising model under helical bound-
ary conditions. For the Ising model on the M ×N square
lattice with the helicity factor d ≡ D/M , the system has
periodic boundary conditions in the N direction and heli-
cal (tilted) boundary conditions in the M direction such
that the i-site in the first column is connected with the
mod(i+D,M)th site in theN column of the lattice [81,82].
These boundary conditions permit an analytical approach
to the determination of a number of thermodynamic quan-
tities. The Ising model on torus under periodic boundary
conditions can be considered as limiting case of the helical
boundary conditions with d = 0.

An explicit expression for the partition function of the
Ising model on M ×N helical torus is given by [82]

ZIsing
M,N (J) =

1
2

(√
2 coshJ

)2MN

×
{
I 1

2 , 1
2

+ I 1
2 ,0 + I0, 1

2
− sgn

(
T − Tc

Tc

)
I0,0

}
,

(14)

I2
α,β =

M∏

m=1

N∏

n=1

{
a− b cos

[
2π
(
m+ β

M
− d

n+ α

N

)]

−b cos
[
2π
n+ α

N

]}
, (15)

where a =
(
1 + tanh2 J

)2
and b = 2 tanhJ

(
1 − tanh2 J

)
.

In addition, the function sgn(x) denotes the sign of the
value x and Tc is the critical temperature of the bulk sys-
tem (sinh 2Jc = 1).

Then an explicit expression for the partition function
of the Ising model on M×N helical torus can be rewritten
as [45]

ZIsing
M,N (μ) =

1
2

(√
2eμ
)MN {

Z 1
2 , 12

(M,N, μ, d)

+ Z0, 12
(M,N, μ, d) + Z 1

2 ,0(M,N, μ, d)

+ sgn(μ)Z0,0(M,N, μ, d)
}
, (16)

where we have introduced the partition function with
twisted boundary conditions Zα,β(M,N, μ, d)

Z2
α,β(M,N, μ, d) =

N−1∏

n=0

M−1∏

m=0

4
{

sin2
[ π
N

(n+ α)
]

+ sin2
[ π
M

(m+ β − dξ(n+ α))
]

+ 2 sinh2μ
}
, (17)
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where ξ is the aspect ratio given by equation (2). Here
α control the boundary conditions for the underlying free
fermion in the N -direction (ψ(x + N, y) = e2πiαψ(x, y)),
while β control the boundary conditions for the under-
lying free fermion in the M -direction (ψ(x, y + M) =
e2πiβψ(x, y)). In particular α = 0 or β = 0 corresponds
to the periodic boundary conditions in the N or M direc-
tions respectively, while α = 1

2 or β = 1
2 stands for anti-

periodic boundary conditions. In general the twist angles
α and β can be taken from the interval [0, 1] [23]. The
Zα,β(M,N, μ, d) can be transformed into a simpler form

Zα,β(M,N, μ, d) =
N−1∏

n=0

2
∣∣∣sinh

{
Mωμ

(
π
n+ α

N

)

+ iπ [β − dξ(n+ α)]
}∣∣∣, (18)

where lattice dispersion relation has appeared

ωμ(k) =
√

sin2 k + 2 sinh2μ. (19)

This is nothing but the functional relation between energy
ωμ(k) and momentum k of a free quasi-particle on the pla-
nar square lattice. In what follow we will need the Taylor
expansion of lattice dispersion relation at the critical point
ω0(k)

ω0(k) = k

(
λ+

∞∑

p=1

λ2p

(2p)!
k2p

)
(20)

where λ = 1, λ2 = −2/3, λ4 = 4, etc. We shall not use the
special values of these coefficients assuming the possibility
for generalizations.

It is easy to see from equation (17), that the
partition function with twisted boundary conditions
Zα,β(M,N, μ, d) obey the following very useful identities
for the particular case d = 0 and μ = 0 (see [48])

Zα,β(M, 2N, 0, 0) = Zα
2 ,β(M,N, 0, 0)Z 1−α

2 ,β(M,N, 0, 0),
(21)

Zα,β(2M,N, 0, 0) = Zα, β
2
(M,N, 0, 0)Zα, 1−β

2
(M,N, 0, 0).

(22)

In particular, from the identities given by equations (21)
and (22) one can obtain that

Z 1
2 ,0(M, 2N, 0, 0) = Z2

1
4 ,0(M,N, 0, 0), (23)

Z 1
2 , 1

2
(M, 2N, 0, 0) = Z2

1
4 , 1

2
(M,N, 0, 0), (24)

Z 1
4 ,0(2M,N, 0, 0) = Z 1

4 ,0(M,N, 0, 0)Z 1
4 , 1

2
(M,N, 0, 0),

(25)
Z 1

2 ,0(2M,N, 0, 0) = Z 1
2 ,0(M,N, 0, 0)Z 1

2 , 1
2
(M,N, 0, 0).

(26)

We are interested in computing the asymptotic expansions
of the free energy F at the critical point J = Jc (μ = μc =
0) for large N , M and D with fixed aspect ratio ρ and
helicity factor d. The free energy F is defined as follows

F = − 1
S

lnZIsing
M,N (J) (27)

and can be compute directly from equation (16).

Note that the general theory about the asymptotic ex-
pansion of Zα,β(M,N, 0, d), for the particular case d = 0,
has been given in [23]. The theory can be extended to
the case with arbitrary rational number d [45]. The exact
asymptotic expansion of the lnZα,β(M,N, 0, d) in terms
of the Kronecker’s double series has been obtained in [45]

lnZα,β(M,N, 0, d) =
2G
π
S + ln

∣∣∣∣
θα,β(iτ0ξ)
η(iτ0ξ)

∣∣∣∣

− 2πξ
∞∑

p=1

(
π2ξ

S

)p Re Λ2p K
α,β
2p+2(iτ0ξ)

(2p+ 2)(2p)!
.

(28)

Here G = 0.915966 is Catalans constant and the differen-
tial operators Λ2p can be expressed via coefficients λ2p of
the expansion of the lattice dispersion relation given by
equation (20) as

Λ2 = λ2

Λ4 = λ4 + 3λ2
2

∂

∂τ0

Λ6 = λ6 + 15λ4λ2
∂

∂τ0
+ 15λ3

2

∂2

∂τ2
0

(29)

...

Λp =
p∑

r=1

∑(
zp1

p1!

)k1

. . .

(
zpr

pr!

)kr p!
k1! . . . kr!

∂k

∂zk

here summation is over all positive numbers {k1, . . . , kr}
and different positive numbers {p1, . . . , pr} such that
p1k1 + · · · + prkr = p and k = k1 + · · · + kr − 1.

Thus we can see that the asymptotic expansion
of Zα,β(M,N, 0, d) can be expressed in terms of the
analytic functions such as the elliptic theta functions
θα,β(τ), Dedekind η-function and Kronecker’s double se-
ries, Kα,β

p (τ) with τ = iτ0ξ (see [23,45]), where τ0 is
defined as

τ0 = λ− id. (30)

Note that Kronecker’s double series, Kα,β
p (τ) can be ex-

pressed in terms of the elliptic theta functions only [23,45].

Equations (16), (27) and (28) implies that the free en-
ergy at the critical point (μ = μc = 0) can be written
in the form given by equation (1). Thus, the finite-size
corrections to the free energy are always integer powers
of S−1. The first few coefficients in the exact asymptotic
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expansion of the free energy are given by

fbulk = − ln
√

2 − 2G
π
, (31)

f1s = f2s = 0, (32)

f0(ξ) = − ln
θ2 + θ3 + θ4

2η
, (33)

f1(ξ) =−π
3ξ2

180

7
8 (θ92+θ93+θ94)+θ2θ3θ4

[
θ32θ

3
4 − θ33θ

3
2 − θ33θ

3
4

]

θ2+θ3+θ4
,

(34)
...

To simplify the notation we have use the short-hands

θk = |θk(iτ0ξ)|, k = 2, 3, 4, (35)
η = |η(iτ0ξ)|.

All finite size correction terms are invariant under trans-
formation ξ → 1/(1 + d2)ξ, which actually means that ξeff

ξeff = ξ
√

1 + d2 (36)

can be regarded as the effective aspect ratio.

2.1.2 Ising model on torus

An explicit expression for the partition function of the
Ising model on M × N torus, which was given originally
by Kaufmann [9], can be written as

ZIsing
M,N (μ) =

1
2

(√
2eμ
)MN {

Z 1
2 , 1

2
(M,N, μ, 0)

+Z0, 1
2
(M,N, μ, 0) +Z 1

2 ,0(M,N, μ, 0) +Z0,0(M,N, μ, 0)
}

(37)

where the partition function with twisted boundary con-
ditions Zα,β(M,N, μ, 0) are given by equation (17) with
d = 0. To derive the exact asymptotic expansion of the
free energy for Ising model at the critical point μ = 0
one need to derive the exact asymptotic expansion of the
logarithm of the partition function with twisted bound-
ary conditions Zα,β(M,N, 0, 0). Exact asymptotic expan-
sion of the Zα,β(M,N, 0, 0) have been obtained in 2002 by
Ivashkevich et al. [23].

The exact asymptotic expansion of Zα,β(M,N, 0, 0)
are given by equations (28) for the case d = 0. The first
few coefficients in the exact asymptotic expansion of the
free energy are given by equations (31)–(34) for the case
d = 0.

2.1.3 Ising model under Brascamp-Kunz boundary
conditions

As is mentioned in introduction there are a few bound-
ary conditions for which the Ising model has been solved
exactly. Among them is the special boundary conditions

studied by Brascamp and Kunz (BK) [7] onM×2N square
lattice. They considered a lattice with 2N sites in the x
direction and M sites in the y directions. The boundary
conditions are periodic in the x direction; in the y direc-
tions, the spins are up (+1) along the upper border of the
resulting cylinder and have the alternating values along
the lower border of the resulting cylinder. For the BK
boundary conditions, the Ising partition function given in
reference [7] can be rewritten as

ZIsing
M,2N (μ) = (

√
2eμ)2MN

N∏

i=1

M∏

j=1

F (i, j) (38)

where μ = 1/2 ln sinh 2J and

F (i, j) = 4

[
2 sinh2 μ+ sin2

(
π(i− 1/2)

2N

)

+ sin2

(
πj

2(M + 1)

)]
. (39)

It can be shown [24] that the partition function ZIsing
M,2N

can be expressed to the form of partition function with
twisted boundary conditions Z1/2,0(M,N, μ, 0) as

ZIsing
M,2N (μ) =

(√
2eμ
)2MN

2
√

cosh [2Nωμ(0)] cosh [2Nωμ(π/2)]

×
√
Z1/2,0(2M + 2, 2N,μ, 0), (40)

where Z1/2,0(2M + 2, 2N,μ, 0) is given by equation (18)
with d = 0, α = 1/2 and β = 0 and ωμ(k) is given by
equation (19).

Now using equation (28) with d = 0, α = 1/2 and β =
0 one can easily obtain the exact asymptotic expansion
of the free energy for Ising model with Brascamp-Kunz
boundary conditions, which can be written in the form
given by equation (1). The bulk free energy is the same
for all boundary conditions and given by equation (31).
All other coefficients in that expansion are given by

f1s =
1
4

ln 2(1 +
√

2), f2s = 0, (41)

f0 = −1
2

ln
θ4(iξ)
2η(iξ)

, (42)

fp =
π2p+1ξp+1

2p(2p+ 2)(2p)!
Λ2p K

1
2 ,0
2p+2(iξ) for p = 1, 2, 3, . . . ,

(43)

where ξ is given by equation (2) withM replaced byM+1,
namely

ξ =
M + 1
N

(44)

and S is given by

S = 2(M + 1)N. (45)

Note that S is slightly different from the true area of the
M × 2N square lattice and aspect ratio is twice larger
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than true aspect ratio of the lattice. The coefficients Λ2p

are listed in equation (29) and Kronecker’s double series

K
1
2 ,0
2p+2 can be written in terms of the elliptic theta func-

tions for p = 1, 2, 3, . . . (see Appendix F of [23]). Thus all
coefficients in the expansion equation (1) are expressed
through analytical functions.

It is interesting to mention that the internal energy at
the critical point (Uc) of the Ising model with Brascamp
and Kunz boundary condition on finite M × 2N square
lattice is equal to its bulk values without any finite-size
corrections, namely Uc = −√

2. To see that let us consider
the internal energy at the critical point T = Tc (μ = 0)

Uc =
dF (J)
dJ

∣∣∣∣
J=Jc

=

− μ′
(

1 +
d

dμ
lnZ1/2,0(2M + 2, 2N,μ, 0)|μ=0

)
= −

√
2,

(46)

where μ′ = dμ
dJ

∣∣∣
J=Jc

is the first derivative of μ(J) with

respect to J at criticality. The derivatives μ′ can be easily
computed from equation (13): μ′ =

√
2. One can further

note that Z1/2,0(2M+2, 2N,μ, 0) is an even function with
respect to its argument μ, which imply immediately that(
dZ1/2,0(2M + 2, 2N,μ, 0)/dμ

)
μ=0

= 0. Thus we find that

Uc = −√
2.

2.2 The dimer model on square lattice under different
boundary conditions

The dimer model was originally introduced to represent
physical adsorption of diatomic molecules on crystal sur-
faces [83]. The surface may be considered as a regular
lattice which attracts the diatomic molecules (dimers) in
such a way that each dimer fills two neighboring lattice
sites and with crucial constraint that no lattice site is
covered by two dimers. In contrast to spin models, the
critical behavior of dimer models are strongly influenced
by the structure of the underlying lattice. For example,
the square lattice dimer model is critical with algebraic
decay of correlators [84,85], while the dimer model on
the anisotropic honeycomb lattice, which is equivalent to
a five-vertex model on the square lattice [86], exhibits a
potassium dihydrogen phosphate (KDP)-type singularity
and the dimer model on the Fisher-type lattice exhibits
Ising-type transitions [87]. Thus, it appears that the dimer
model itself has not a single critical behavior, but sev-
eral critical behaviors associated with different classes of
universality.

The interest in dimer model was renewed with the
discovery of high-temperature superconductivity and also
with recent work on domino tilings (which are equiva-
lent to dimers on a square lattice) of an Aztec diamond,
demonstrating a strong effect of the boundary on a typical
domino configuration [77,88–90].

The exact calculation of partition functions of the
dimer model on the M × N square lattice under differ-
ent boundary conditions has attracted the attention of re-
searchers for more than fifty years. In 1961 Kasteleyn [12]
obtained exact partition functions for the dimer model
on the square lattice with both free and toroidal bound-
ary conditions. Fisher [13], Temperley and Fisher [14]
also solved the case of free boundary case independently.
Ferdinand [91] calculated finite-size corrections up to the
first order for the free energy of the dimer model onM×N
square lattices with both free and toroidal boundary con-
ditions for different parities of M and N . In 1973 McCoy
and Wu [10] calculated exact partition functions for cylin-
drical boundary conditions. In 1985 Bhattacharjee and
Nagle [92] studied the finite-size effect of an anisotropic
dimer model of domain walls on the brick lattice. In 1993
Brankov and Priezzev [93] obtained the exact partition
function for a Möbius strip. In 1999 and 2002 Lu and Wu
obtained exact partition functions for a Möbius strip and
a Klein bottle [94,95] and calculated finite-size corrections
up to the first order for M ×N lattices when both M and
N are even. In 2011, Wu et al. [96] solve the monomer-
dimer problem on a nonbipartite lattice, a simple quartic
lattice with cylindrical boundary conditions, with a single
monomer residing on the boundary by mapping the prob-
lem onto one of closed-packed dimers on a related lattice.
In 2014, Allegra and Fortin [97] apply the Grassmann al-
gebra to the monomer-dimer problem on a square lattice.
In 2015, Allegra [98] perform the finite size effect analysis
to study surface and corner effects of the dimer model on
the square lattice with an arbitrary number of monomers.

In this section, we will consider the model on the
square lattice under five different boundary conditions. We
will relate the exact partition functions of the dimer model
on the square lattice under free, cylindrical, toroidal,
Möbius strip and Klein bottle boundary conditions ob-
tained by Kasteleyn [12], Temperley and Fisher [13,14],
McCoy and Wu [10], Brankov and Priezzhev [93], and Lu
and Wu [94,95] to the partition functions with twisted
boundary conditions Zα,β(M,N, 0, 0) with (α, β) =
(1/2, 0), (0, 1/2) and (1/2, 1/2). Then we can apply the
algorithm of reference [23] to derive the exact asymptotic
expansions of the logarithm of the partition functions for
all boundary conditions. We find that the finite-size cor-
rections is sensitive to boundary conditions and the parity
of the number of lattice sites along the lattice axis.

Consider a dimer model on an M × N square lat-
tice of MN sites with M rows and N columns. The
lattice forms a cylinder if there are periodic boundary
conditions in the horizontal directions and free bound-
ary conditions in the vertical direction, a torus if there
are periodic boundary conditions in both directions, a
Möbius strip if there are twisted boundary conditions
in the horizontal direction and free boundary conditions
in the vertical direction, and a Klein bottle if, in addi-
tion to the twisted boundary conditions in the horizontal
directions, there are periodic boundary conditions in the
vertical direction. Here under twisted boundary condi-
tion we mean the twisting one end of a rectangular strip

http://www.epj.org


Page 8 of 18 Eur. Phys. J. B (2017) 90: 160

through 180◦ about the horizontal axis of the strip and
attaching this end to the other.

The partition function of the dimer model on anM×N
lattice is given by

ZM,N =
∑

znv
v znh

h , (47)

where summation is taken over all dimer covering con-
figurations, zv and zh are, respectively, dimer weight in
the horizontal and vertical directions, nv and nh are, re-
spectively, the number of vertical and horizontal dimers.
Without lose the generality we will consider the case z = 1
(zh = zv). We will show that the exact asymptotic ex-
pansion of the logarithm of the partition function for
the dimer model can be written in the form given by
equation (1).

The explicit expression of the partition function de-
pends crucially on whether M and N being even or odd,
and since the total number of sites must be even if the
lattice is to be completely covered by dimers, we will
consider three cases, namely (M → 2M , N → 2N),
(M → 2M − 1, N → 2N), and (M → 2M , N → 2N − 1).
It has been shown [23] that the partition function for the
dimer model under five different boundary conditions can
be expressed in terms of the only object Zα,β(M,N, 0, 0)
with (α, β) = (0, 1

2 ), (1
2 , 0), (1

2 ,
1
2 ).

(i) For the partition function of the dimer model on
2M × 2N lattice under different boundary conditions we
obtained [23]

Ztorus
2M,2N =

z2MN
v

2

[
Z2

1
2 , 1

2
(M,N, 0, 0) + Z2

0, 1
2
(M,N, 0, 0)

+ Z2
1
2 ,0(M,N, 0, 0)

]
, (48)

Zfree
2M,2N = z2MN

v

[ √
2 Z 1

2 , 1
2
(2M + 1, 2N + 1, 0, 0)

2 cosh [(2M + 1)a] cosh [(2N + 1)a]

] 1
2

,

(49)

Zcyl
2M,2N = z2MN

v

Z 1
2 , 1

2
(2M + 1, N, 0, 0)

2 cosh (Na)
, (50)

ZKlein
2M,2N = z2MN

v Z 1
2 , 1

2
(M, 2N, 0, 0), (51)

ZMob
2M,2N = z2MN

v

[
Z 1

2 , 1
2
(2M + 1, 2N, 0, 0)

2 cosh (2Na)

] 1
2

, (52)

where the partition function with twisted boundary condi-
tions Zα,β(M,N, 0, 0) is given by equation (18) with μ = 0
and d = 0. Here the constant a is defined as follow

a = arcsinh 1.

Note that the general theory about the asymptotic expan-
sion of Zα,β(M,N, 0, 0) has been given in [23].
(ii) For the partition function of the dimer model on (2M−
1) × 2N lattice under different boundary conditions we

obtained [23]

Ztorus
2M−1,2N = zN(2M−1)

v Z 1
2 ,0(2M − 1, N, 0, 0), (53)

Zfree
2M−1,2N = zN(2M−1)

v

[
Z 1

2 ,0(2M, 2N+1, 0, 0)√
2 sinh(2Ma) cosh((2N+1) a)

] 1
2

,

(54)

Zcyl
2M−1,2N =

z
N(2M−1)
v

2

Z 1
2 ,0(2M,N, 0, 0)

cosh (N a)
, (55)

ZKlein
2M−1,2N =

√
2zN(2M−1)

v Z
1
2
1
2 ,0

(2M − 1, 2N, 0, 0), (56)

ZMob
2M−1,2N = zN(2M−1)

v

[
Z 1

2 ,0(2M, 2N, 0, 0)

cosh (2N a)

] 1
2

. (57)

(iii) And for the partition function of the dimer model on
2M×(2N−1) lattice under different boundary conditions
we get [23]

Ztorus
2M,2N−1 = zM(2N−1)

v Z0, 1
2
(M, 2N − 1, 0, 0), (58)

Zfree
2M,2N−1 = zM(2N−1)

v

[ √
2Z0, 12

(2M+1, 2N, 0, 0)√
2 sinh(2N a) cosh((2M+1) a)

] 1
2

,

(59)

Zcyl
2M,2N−1 = zM(2N−1)

v

[
Z0, 1

2
(2M + 1, 2N − 1, 0, 0)

2 sinh ((2N − 1) a)

] 1
2

,

(60)

ZKlein
4M,2N−1 = z2M(2N−1)

v Z 1
2 , 1

2
(2M, 2N − 1, 0, 0), (61)

ZMob
4M,2N−1 = z2M(2N−1)

v

[
Z 1

2 , 1
2
(4M + 1, 2N − 1, 0, 0)

2 cosh ((2N − 1) a)

] 1
2

.

(62)

2.2.1 Identities of the dimer model on the square lattice

Now using equations (49)–(62) it is easy to derive a whole
set of the identities for the dimer model with different
boundary conditions. From equations (50) and (52) its
easy to see that dimer model on 2M × 2N lattice with
cylindrical and Möbius strip boundary conditions obey the
following identity

ZMob
2M,2N =

√
Zcyl

2M,4N . (63)

This identity was first established in the large M and N
limit by Brankov and Priezzhev [93] and then was rigor-
ously established by Lu and Wu [95]. Now that identity
follows directly from the definition of the partition func-
tion of the dimer model through the partition function
with twisted boundary conditions Z 1

2 , 12
(M,N, 0, 0) given

by equations (50) and (52). Now it is easy to derive an-
other two identities for the partition functions of the dimer
model on 2M × 2N lattices, namely, from equations (49)
and (50) its easy to see that dimer model on 2M × 2N
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lattice with free and cylindrical boundary conditions obey
the following identity

Zfree
2M,2N =

2
1
4

zM
v

√
cosh [(2M + 1) a]

√
Zcyl

2M,4N+2 (64)

and from equations (50) and (51) its easy to see that dimer
model on 2M×2N lattice with cylindrical and Klein bottle
boundary conditions obey the following identity

ZKlein
4M+2,2N = 2z−2N

v cosh (2Na)Zcyl
2M,4N . (65)

The identities given by equations (64) and (65) was first
established by Izmailian et al. [48].

Now let us consider the dimer model on the (2M−1)×
2N lattice. Using equations (53) and (56) one can write
the following identities between partition functions of the
dimer model on (2M − 1) × 2N lattice with toroidal and
Klein bottle boundary conditions

Ztorus
2M−1,4N =

1
2
[
ZKlein

2M−1,2N

]2
. (66)

Now from equations (55) and (57) its easy to see that
dimer model on (2M − 1) × 2N lattice with cylindrical
and Möbius strip boundary conditions obey the following
identity

Zcyl
2M−1,4N =

1
2
[
ZMob

2M−1,2N

]2
, (67)

and from equations (55) and (57) we arrive to the following
identity for the partition functions of the dimer model on
(2M − 1)× 2N lattice with cylindrical and free boundary
conditions

Zcyl
2M−1,4N+2 = z2M−1

v

sinh (2Ma)√
2

[
Zfree

2M−1,2N

]2
. (68)

The identity given by equation (67) was first established
by Lu and Wu [95] and identities given by equations (66)
and (68) was first established by Izmailian et al. [48].

And finally, using the expressions for the partition
functions Zcyl

2M−1,2N , Z
Mob
2M−1,2N and ZKlein

2M,2N (see Eqs. (55),
(57) and (51)) and identity given by equation (26) we can
obtain the following identities

Zcyl
4M−1,4N = Zcyl

2M−1,4NZ
Klein
4M,2N (69)

ZMob
4M−1,2N = ZMob

2M−1,2N

√
ZKlein

4M,2N . (70)

The identities given by equations (69) and (70) was es-
tablished by Izmailian et al. [48]. Note that there are few
misprints in equations (70) and (71) of reference [48]. In
equation (70) one should replace N by 2N in the expres-
sions for Zcyl and in equation (71) one should replace N
by N/2 in the expression for ZKlein.

Let us point out once again that the identities given
by equations (63)–(70) were obtained by comparing ex-
act expressions for the various partition functions given
by equations (48)–(62). In 2016, Cimasoni and Pham [99]
provide a general principle allow us, not only to explain
some of these identities (Eqs. (63), (66) and (67)), but
also to generalize them. There is still interest in explaining
remaining identities (Eqs. (64), (65), (68)–(70)) by some
general underlying principle.

2.2.2 Exact finite-size corrections of the free energy
for square lattice dimer model under different boundary
conditions

In Section 2 it has been shown that the parti-
tion functions of the dimer model with various
boundary conditions can be expressed, in terms
of the partition function with twisted boundary
conditions Z1/2,0(K,L, 0, 0), Z0,1/2(K,L, 0, 0) and
Z1/2,1/2(K,L, 0, 0) (see Eqs. (48)–(62)). Based on such
results and using asymptotic expansion of the partition
function with twisted boundary conditions given by equa-
tion (28) for μ = 0 and d = 0, one can easily write down
all the terms of the exact asymptotic expansion of the
logarithm of the partition functions for the dimer model,
which can be written in the form given by equation (1).

The bulk free energy fbulk is the same for all boundary
conditions and given by

fbulk = −1
2

ln zv − G

π
, (71)

where G is the Catalan constant given by G =∑∞
n=0 (−1)n/(2n+ 1)2 = 0.915965594 . . . The surface

free energy f1s and f2s are given by

f torus
1s = fKlein

1s = 0,

f torus
2s = fKlein

2s = f cyl
2s = fMob

2s = 0,

ffree
2s = ffree

1s = f cyl
1s = fMob

1s =
1
4

ln zv +
1
4

ln
(
1 +

√
2
)
.

(72)

Note that f1s and f2s depend on the type of boundary
conditions but independent on the parities (even or odd)
of M and N . This is not the case for the other coefficients
fp(ξ) (p = 0, 1, . . .) in the expansion of equation (1). Now,
we will list expansion coefficients fp(ξ) for p = 0, 1, 2, . . .
and show that they depend crucially on whether M and
N are even or odd.
(i) Dimers on 2M × 2N lattice. Now using equation (28)
with d = 0, (α, β) = (0, 1/2), (1.2, 0) and (1/2, 1/2)
and the expressions for the partition functions Ztorus

2M,2N

and ZMob
2M,2N one can easily obtain the coefficients fp(ξ)

(p = 0, 1, . . .) in the exact asymptotic expansion of the
free energy for the dimer model on 2M×2N lattice under

http://www.epj.org


Page 10 of 18 Eur. Phys. J. B (2017) 90: 160

periodic (torus) and Möbius strip boundary conditions

f torus
0 (ξ) = − ln

θ22 + θ23 + θ24
2η2

, (73)

f torus
1 (ξ) =

− π3ξ2

90

7
8

(
θ102 + θ103 + θ104

)
+ θ22θ

2
3θ

2
4

(
θ22θ

2
4 − θ22θ

2
3 − θ23θ

2
4

)

θ22 + θ23 + θ24
,

(74)
...

fMob
0 (ξ) = −1

6
ln

2 θ23
θ2θ4

, (75)

fMob
1 (ξ) = −π

3ξ2

360

(
7
8
θ83 + θ42θ

4
4

)
, (76)

fMob
p (ξ) =

π2p+1ξp+1

(2p+ 2)(2p)!
Λ2p K

1
2 , 1

2
2p+2(iξ) for p = 2, 3, . . . ,

(77)

where θi = θi(iξ) with i = 2, 3, 4. The coefficients Λ2p

are listed in equation (29) and Kronecker’s double series

K
1
2 , 1

2
2p+2(iξ) can be written in terms of the elliptic theta

functions for p = 1, 2, 3, . . . (see Appendix F of [23]).
Using the expressions for the partition functions

Zfree
2M,2N , Z

cyl
2M,2N , Z

Klein
2M,2N and ZMob

2M,2N given by equa-
tions (49)–(52) one can easily obtain the expansion coef-
ficients fp(ξ) (p = 0, 1, . . .) for free, cylindrical and Klein
bottle boundary conditions through the following func-
tional relations

ffree
p (ξ) = fMob

p (ξ) +
δp,0

4
ln (8z2

v), (78)

f cyl
p (ξ) = 2p+1 fMob

p (2ξ), (79)

fKlein
p (ξ) = 2p+1 fMob

p (ξ/2). (80)

(ii) Dimers on (2M − 1) × 2N lattice. For the Möbius
strip boundary condition the asymptotic expansion for
the free energy of the dimer model on (2M − 1) × 2N
lattice can be obtain by using expressions for the parti-
tion functions ZMob

2M−1,2N and the asymptotic expansion
of lnZα,β(M,N, 0, 0) given by equation (28) with d = 0,
α = 1/2 and β = 0. The first few coefficient in this expan-
sion are given by

fMob
0 (ξ) = −1

2
ln 2 − 1

6
ln

2 θ24
θ2θ3

, (81)

fMob
1 (ξ) = −π

3ξ2

360

(
7
8
θ84 − θ42θ

4
3

)
, (82)

fMob
p (ξ) =

π2p+1ξp+1

(2p+2)(2p)!
Λ2pK

1
2 ,0
2p+2(iξ) for p = 2, 3, . . . .

(83)

Using the expressions for the partition functions
Zfree

2M−1,2N , Z
cyl
2M−1,2N , Z

Klein
2M−1,2N and ZMob

2M−1,2N given by
equations (53)–(57) one can easily obtain the expansion

coefficients fp(ξ) (p = 0, 1, . . .) for periodic, free, cylin-
drical and Klein bottle boundary conditions through the
following functional relations

f torus
p (ξ) = 2p+1 fMob

p (2ξ) − δp,0

2
ln 2, (84)

ffree
p (ξ) = fMob

p (ξ) +
δp,0

4
ln (2z2

v), (85)

f cyl
p (ξ) = 2p+1 fMob

p (2ξ) − δp,0

2
ln 2, (86)

fKlein
p (ξ) = fMob

p (ξ). (87)

(iii) Dimers on 2M × (2N − 1) lattice. Finally let us con-
sider the dimer model on the 2M×(2N−1) square lattice.
For cylindrical and Möbius strip boundary conditions, the
expansion coefficients fp(ξ) (p = 0, 1, . . .) are

f cyl
0 (ξ) = −1

6
ln

2 θ22
θ4θ3

, (88)

f cyl
1 (ξ) = −π

3ξ2

360

(
7
8
θ82 − θ43θ

4
4

)
, (89)

f cyl
p (ξ) =

π2p+1ξp+1

(2p+2)(2p)!
Λ2pK

0, 1
2

2p+2(iξ) for p = 2, 3, . . .

(90)

fMob
0 (ξ) = −1

6
ln

2 θ23
θ2θ4

, (91)

fMob
1 (ξ) = −π

3ξ2

360

(
7
8
θ83 + θ42θ

4
4

)
, (92)

fMob
p (ξ) =

π2p+1ξp+1

(2p+ 2)(2p)!
Λ2pK

1
2 , 12
2p+2(iξ) for p = 2, 3, . . .

(93)

Now using the expressions for the partition functions
Ztorus

2M,2N−1, Z
free
2M,2N−1, Z

cyl
2M,2N−1, Z

Klein
4M,2N−1 and ZMob

4M,2N−1

given by equations (58)–(62) one can easily obtain the ex-
pansion coefficients fp(ξ) (p = 0, 1, . . .) for periodic, free
and Klein bottle boundary conditions through the follow-
ing functional relations

f torus
p (ξ) = 2p+1 f cyl

p (ξ/2), (94)

ffree
p (ξ) = f cyl

p (ξ) +
δp,0

4
ln (8z2

v), (95)

fKlein
p (ξ) = 2p+1 fMob

p (ξ/2). (96)

Thus we derive exact finite-size corrections for the loga-
rithm of the partition function of the dimer model on the
M × N square lattice with five different sets of bound-
ary conditions and have found that the exact asymptotic
expansion of the free energy of the dimer model can be
written in the form given by equation (1). Except the bulk
free energy fbulk all other coefficients in this expansion are
sensitive to the boundary conditions. The surface contri-
bution to the free energy f1s and f2s depend on the type
of boundary conditions but independent on the parities
(even or odd) of M and N . The other coefficients fp(ξ)
(p = 0, 1, . . .) in the expansion of equation (1) show strong
dependence as on parity of the lattice side M and N as
well on the boundary conditions.
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2.3 The spanning tree model on square lattice under
different boundary conditions

Enumeration of spanning trees on a graph is a classical
problem of combinatorial graph theory, first considered
by Kirchhoff [100] in his analysis of electrical networks.
Let G = V,E denote a connected graph (without loops)
with vertex and edge sets V and E. A spanning subgraph
of G is a spanning tree T if it has V 1 edges with at least
one edge incident at each vertex. The degree of a vertex is
the number of edges attached to it (often denoted coordi-
nation number). According to the Kirchhoff theorem, the
number of spanning-tree subgraphs on a lattice is given
by the minors of the discrete Laplacian matrix Δ of this
lattice. The Laplacian matrix Δ is defined as

Δ = Q−A, (97)

where A is an Ns × Ns adjacency matrix, and Ns is the
number of lattice sites. The elements of matrix A are given
by Aij = 1, if sites i and j are adjacent, Aij = 0, oth-
erwise, and Q is an Ns × Ns degree matrix of G with
elements Qij = kiδij , where ki is the degree of site i,
and δij is the Kronecker δ function. In 2000 Tzeng and
Wu [101] obtained the closed-form expressions for the
spanning tree generating function for a hypercubic lattice
in d dimensions under free, periodic, and a combination of
free and periodic-boundary conditions. They also obtained
the spanning-tree-generating function for a simple quar-
tic net embedded on two nonorientable surfaces, a Mobius
strip and the Klein bottle.

In 2015 Izmailian and Kenna [39] express the partition
functions of the spanning tree on finite square lattices un-
der five different boundary conditions (free, cylindrical,
toroidal, Moebius strip, and Klein bottle) in terms of a
principal partition function with twisted boundary condi-
tions. Based on these expressions, they derive the exact
asymptotic expansions of the logarithm of the partition
function for all boundary conditions mentioned above.
They have also established several groups of identities re-
lating spanning tree partition functions for the different
boundary conditions.

Let us consider the problem of enumerating weighted
spanning trees on the M × N rectangular lattice. The
problem of enumerating spanning trees on a graph was
first considered by Kirchhoff in his analysis of electrical
networks [100]. The enumeration of spanning trees in-
volves the evaluation of the tree generating (or partition)
function

ZM,N =
∑

T

xnh
1 xnv

2 , (98)

where weights x1 and x2, respectively, are assigned to the
edges in the horizontal and vertical direction. The sum-
mation is taken over all spanning tree configurations T on
the lattice and, nh and nv are the numbers of edges in the
spanning tree in the respective directions. Without lose
the generality we will consider the case x1 = x2. It has
been shown [39] that the partition function of the span-
ning tree on M × N lattice is expressed in terms of the

principal partition function with twisted boundary condi-
tions Z0,0(M,N, 0, 0) and Z 1

2 , 1
2
(M,N, 0, 0) only, namely

Ztorus
M,N =

1
MN

Z2
0,0(M,N, 0, 0), (99)

Zcyl
M,N =

1
2N sinh (Ma)

Z0,0(M, 2N, 0, 0), (100)

Zfree
M,N =

21/4

√
2MN sinh (2Na) sinh (2M a)

× Z
1/2
0,0 (2M, 2N, 0, 0), (101)

ZMob
M,N =

1
2M | sinh

(
Na+ iπM

2

)|Z0,0(M,N)

× Z 1
2 , 1

2
(M,N, 0, 0), (102)

ZKlein
M,N =

{
coth (N a)

2M Z0,0(M, 2N, 0, 0), for even M
1

2MZ0,0(M, 2N, 0, 0), for odd M.

(103)

It is clear that Z0,0(M,N, 0, 0) given by equation (17) for
the case d = 0 and μ = 0 vanishes due to the zero mode at
(m,n) = (0, 0). In what follows, therefore, we remove the
zero mode, and when α = β = 0 replace Z0,0(M,N, 0, 0)
in equation (17) by

Z2
0,0(M,N, 0, 0) =

M−1∏

m=0

N−1∏

n=0

′
4
[
sin2 mπ

M + sin2 nπ
N

]
, (104)

where the prime on the product denotes the restriction
(m,n) 
= (0, 0). The general theory for the asymptotic ex-
pansion of Zα,β(M,N, 0, 0) for (α, β) 
= (0, 0) has been
given in [48]. The exact asymptotic expansion of the
lnZ0,0(M,N, 0, 0) in terms of the Kronecker’s double se-
ries K0,0

2p+2(iξ) has been obtained in (see Appendix A
of [78])

lnZ0,0(M,N, 0, 0) =
S

π

∫ π

0

ω0(x)dx + ln
√
Sξ + 2 ln η(iξ)

− 2πξ
∞∑

p=1

(
π2ξ

S

)p
Λ2p

(2p)!
K0,0

2p+2(iξ)
2p+ 2

, (105)

where S is the area of the lattice, ξ is the aspect ratio, η(iξ)
is Dedeking η-function, ω0(x) is given by equation (19) for
the case μ = 0 and Λ2p is given by equation (29).

2.3.1 Exact finite-size corrections of the free energy for
spanning tree model on square lattice under different
boundary conditions

The exact asymptotic expansions of the free energy for all
boundary conditions can be written in the form given by
equation (1). The bulk free energy fbulk for the spanning
tree on an M × N lattices is the same for all boundary
conditions and given by

fbulk = −4G
π
, (106)

where G is the Catalan constant.

http://www.epj.org


Page 12 of 18 Eur. Phys. J. B (2017) 90: 160

Spanning tree on the torus

For the spanning tree on the torus the surface free energy
for the spanning tree f1s and f2s in equation (1) are equal
to zero. For the leading correction terms f0(ξ) we obtain

f0(zξ) = − ln ξ − 4 ln η(izξ) = −2 ln η(izξ)η(i/(zξ)),
(107)

for subleading correction terms fp(ξ) for p = 1, 2, 3, . . . ,
we obtain

fp(ξ) = 4π2p+1ξp+1 Λ2p

(2p)!
K0,0

2p+2(iξ)
2p+ 2

. (108)

The coefficients Λ2p are listed in equation (29) and
Kronecker’s double series K0,0

2p+2 in terms of the ellip-
tic theta functions are given in Appendix B of [78] for
p = 1, 2, 3 and 4.

It is easy to see from equation (107), that for the span-
ning tree on finite square lattices under periodic bound-
ary conditions, f0(ξ) does not contain the corner free en-
ergy fcorner given by equation (4), which confirm both
conformal theory [66] and finite-size scaling [102] predic-
tions that logarithmic corner corrections to the free en-
ergy density should be absent for periodic boundary condi-
tions. However, such terms have been found by Duplantier
and David [79] in the two-dimensional spanning tree (ST)
model under periodic boundary conditions

fcorner = − lnS. (109)

This discrepancy comes from the fact that equation (109)
has been obtained for the rooted spanning tree model.
The logarithmic correction to the free energy obtained by
Duplantier and David equation (109) is connected with the
fact that number of rooted spanning trees is S times larger
than that of the un-rooted spanning trees (see Eq. (1.3)
of [79]). It is not related to the contribution to free energy
from the corner. Taking into account that the result for
the free energy for un-rooted spanning trees differs from
the rooted spanning trees by a factor lnS, we can obtain
the correct version for the corner free energy fcorner = 0
by adding to equation (109) the term lnS .

Spanning tree on the plane

For the spanning tree on the plane the surface free energy
f1s and f2s are given by

f1s =
1
2

ln(1 +
√

2), (110)

f2s =
1
2

ln(1 +
√

2). (111)

For the leading correction terms f0(zξ) we obtain

f0(ξ) =
1
4

lnS − 1
2

ln η(iξ)η(i/ξ) − 5
4

ln 2. (112)

For subleading correction terms fp(ξ) for p = 1, 2, 3, . . . ,
we obtain

fp(ξ) =
π2p+1ξp+1

22p

Λ2p

(2p)!
K0,0

2p+2(iξ)
2p+ 2

.

It is easy to see from equation (112) that for the span-
ning tree on finite square lattices under free boundary
condition f0(ξ) contains the universal part funiv given by
equation (8). This confirms the conformal field theory pre-
diction for the corner free energy in models for which the
central charge is c = −2,

fcorner =
1
4

lnS. (113)

Moreover, f0(ξ) contains the non-universal, geometry-
independent constant fnonuniv = − 5

4 ln 2. Again, as in the
case of periodic boundary conditions, there is discrepancy
with the results of Duplantier and David [79] for the corner
free energy in the spanning tree on finite square lattices
under free boundary condition. They obtained for the cor-
ner free energy the expression

fcorner = −3
4

lnS (114)

which is different from the conformal field theory predic-
tion equations (4) and (113). Noting that the result for
the un-rooted spanning tree differs from that of the rooted
spanning tree by a factor lnS, we obtain the correct ver-
sion for the corner free energy given by equation (4) with
c = −2 by adding to equation (114) the term lnS.

Spanning tree on the cylinder

For the spanning tree on the cylinder the surface free en-
ergy f1s is given by equation (110) and f2s is equal to
zero. For the leading correction terms f0(ξ) we obtain

f0(ξ) = − ln η(iξ)η(i/(ξ)) − 1
2

ln 2 − 1
2

ln ξ, (115)

for subleading correction terms fp(ξ) for p = 1, 2, 3, . . . ,
we obtain

fp(ξ) =
π2p+1ξp+1

2p−1

Λ2p

(2p)!
K0,0

2p+2(iξ)
2p+ 2

.

Spanning tree on the Möbius strip

For the spanning tree on the Möbius strip the surface free
energy f1s is given by equation (110) and f2s in equal to
zero. For the leading correction terms f0(ξ) we obtain

f0(ξ) = − ln ξ − ln θ3(iξ)η(iξ), (116)

for subleading correction terms fp(ξ) for p = 1, 2, 3, . . . ,
we obtain

fp(ξ) = 2π2p+1ξp+1 Λ2p

(2p)!
K0,0

2p+2(iξ) +K
1
2 , 1

2
2p+2(iξ)

2p+ 2
.

Kronecker’s double seriesK
1
2 , 12
2p+2(iξ) in terms of the elliptic

theta functions are given in [23] for p = 1, 2 and in [48]
for p = 3, 4.
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Spanning tree on the Klein bottle

For the spanning tree on the Klein bottle the surface free
energy f1s and f2s are equal to zero. For the leading cor-
rection terms f0(ξ) we obtain

f0(ξ) = − ln 2ξ − 2 ln η(2iξ), (117)

for subleading correction terms fp(ξ) for p = 1, 2, 3, . . . ,
we obtain

fp(ξ) = 4π2p+1ξp+1 Λ2p

(2p)!
K0,0

2p+2(2iξ)
2p+ 2

.

In this subsection we derive exact finite-size corrections for
the logarithm of the partition function of the spanning-
tree model on the M × N square lattice with five dif-
ferent sets of boundary conditions. We have found that
the exact asymptotic expansion of the free energy of the
spanning-tree model can be written in the form given by
equation (1). Except the bulk free energy fbulk all other
coefficients in this expansion are sensitive to the boundary
conditions. We explain an apparent discrepancy between
conformal field theory predictions and a two dimensional
spanning tree model with periodic and free boundary con-
ditions [79,80]. We have also obtained the corner free en-
ergy for free boundary conditions. We proved the confor-
mal field theory prediction about the corner free energy
and have shown that the corner free energy, which is pro-
portional to the central charge c, is indeed universal. We
find the central charge in the framework of the conformal
field theory to be c = −2.

2.4 Resistor network on a M × N lattice

The calculation of the resistance between arbitrary node
of infinite networks of resistors is a well studied sub-
ject [103–105]. Resistor networks have been widely studied
as models for conductivity problems and classical trans-
port in disordered media [106–108]. Besides being a cen-
tral problem in electric circuit theory, the computation
of resistances is also relevant to a wide range of prob-
lems ranging from random walks (see [104] and [109], and
discussions below), first-passage processes [110], to lattice
Green’s functions [111]. Past studies have been focused
mainly on infinite lattices [112,113]. Little attention has
been paid to finite network, even though the latter are
those occurring in real life. Recently, Wu [17] has revisited
the two-point resistance problem and deduced a closed-
form expression for the resistance between arbitrary two
nodes for finite networks with resistors r and s in the
two spatial directions. Later, Jafarizadeh et al. [114] pro-
posed an algorithm for the calculation of the resistance be-
tween two arbitrary nodes in an arbitrary distance-regular
networks. However, the exact expression obtained in [17]
is in the form of a double summation whose mathemati-
cal and physical contents are not immediately apparent.
Quite recently Essam and Wu based on the exact expres-
sion for the resistance between arbitrary two nodes for fi-
nite rectangular network obtained in [49] has derived the

asymptotic expansion for the corner-to-corner resistance
(R free

M,N (r, s)) on an M × N rectangular resistor network
under free boundary conditions. For the case M = N and
r = s = 1 they computed the finite-size corrections to the
corner-to-corner resistance up to order N−4:

R free
N,N(1, 1) =

4
π

lnN + 0.077318 +
0.266070
N2

− 0.534779
N4

+O

(
1
N6

)
.

The computation of the asymptotic expansion of the
corner-to-corner resistance (in other word the resistance
between two maximally separated nodes) of a rectangu-
lar resistor network has been of interest for some time, as
its value provides a lower bound to the resistance of com-
pact percolation clusters in the Domany-Kinzel model of
a directed percolation [115].

In 2010 Izmailian and Huang [36] derive the exact
asymptotic expansions for resistance between two maxi-
mally separated nodes on the rectangular network under
free, periodic and cylindrical boundary conditions. They
show that the exact asymptotic expansion of the resistance
between nodes of the network for all boundary conditions
can be written in the form given by equation (9). The all
coefficients in this expansion are expressed through ana-
lytical functions. Based on the exact expression for the re-
sistance between arbitrary two nodes for finite rectangular
network under free, periodical and cylindrical boundary
conditions obtained in [17] they express the resistance be-
tween two most separated nodes in terms ofGα,β(ρ,M,N)
with (α, β) = (1/2, 0) and (0, 1/2). They then extend
Ivashkevich et al. [23] to derive the exact asymptotic ex-
pansions of the resistance between two maximally sepa-
rated nodes on the rectangular network for all boundary
conditions and write down the expansion coefficients up
to the second order. Recently, using the same approach Iz-
mailian and Kenna [72] derive the asymptotic expansions
for the resistance between the center node and a node on
the boundary of the M×N cobweb network with resistors
r and s in the two spatial directions.

An electrical network can be regarded as a graph in
which the resistance Rij is associated to the edge between
pair of connected nodes i and j. Denote the electric po-
tential at the ith vertex by Vi and the net current flowing
into the network at the ith vertex by Ii. When the po-
tential difference occurs between points i and j, the cur-
rent is given by the Ohm’s law Iij = (Vi − Vj)Cij , where
Cij = 1/Rij is the conductance of the respective link. By
the Kirchhoff’s current law total current outflow from any
point in the interior is zero,

∑
j Iij = 0, we then find for

the voltage

Vi =
∑

j

VjCij/Ci (118)

where Ci =
∑

j Cij and the sum is over all nodes j which
are connected to i.

The two-point resistance has a probabilistic inter-
pretation based on classical random walker walking
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on the network. The averaging property expressed by
equation (118) implies that the voltage is a harmonic
function on the interior points of the graph. This makes
the basis for the probabilistic interpretation of the volt-
age [104,116–118]. The random walk determined by the
electrical network is defined as finite state Markov chain
(for more details see [104]) with the transition proba-
bilities Pij that are weighted with the conductances as
Pij = Cij/Ci. Then, when the constant voltage is applied
to the graph such that Va = 1 and Vb = 0, the voltage in
an interior point x is determined as the hitting probability
hx that a walker staring at x reaches the point a before
reaching b.

2.4.1 The exact asymptotic expansion for the resistance
between two maximally separated nodes of the resistor
network under free, periodic and cylindrical boundary
conditions

Consider a rectangular M × N network of resistors with
resistances r and s on edges of the network in the respec-
tive horizontal and vertical directions. The closed-form
expression for the resistance Rij between arbitrary two
nodes i = (x1, y1) and j = (x2, y2) for free, periodic and
cylindrical boundary conditions was obtained in [17].

In [71] it has been shown that the resistanceRM,N (r, s)
between two maximally separated nodes of the network for
all above mentioned boundary conditions can be expressed
in terms of Gα,β(ρ,M,N) only,

R free
M,N(r, s) = −r +

√
rs

S

(
G0,1/2(ρ,M,N)

+G1/2,0(ρ,M,N)
)
, (119)

Rper
M,N(r, s) =

√
rs

S

(
G0,1/2(ρ,M/2, N/2)

+G1/2,0(ρ,M/2, N/2
)
, (120)

Rcyl
M,N(r, s) =

√
rs

S

(
G0,1/2(ρ,M/2, N)

+G1/2,0(ρ,M/2, N)
)
, (121)

where ρ is given by equation (10) and Gα,β(ρ,M,N) is
given by

Gα,β(ρ,M,N) = M Re
N−1∑

n=0

f

(
π
n+ α

N

)

× coth
[
M ω

(
π
n+ α

N

)
+ iπβ

]
(122)

for (α, β) 
= (0, 0). The function ω(x) is the same for all
boundary conditions and given by:

ω(x) =
√
ρ sinx (123)

and function f(x) is depend on boundary conditions and
given by

f(x) =
cos2 x

√
1 + ρ sin2 x

sinx
for free BCs, (124)

f(x) =
1

sinx
√

1 + ρ sin2 x
for periodic BCs, (125)

f(x) =
cos2 x

sinx
√

1 + ρ sin2 x
for cylindrical BCs.

(126)

It is easy to see that Gα,β(ρ,M,N) can be consider as
particular case of the second derivative of the logarithm
of the partition function with twisted boundary conditions
Zα,β(M,N, μ, d) given by equation (18) at μ = 0, d = 0.
To see that let us take the second derivative of equa-
tion (18) at d = 0 with respect to mass variable μ and
then consider limit μ→ 0. As result we obtain

Z ′′
α,β(M,N, 0, 0)

Zα,β(M,N, 0, d)
= M Re

N−1∑

n=0

ω′′
0

(
π(n+α)

N

)

× coth
[
Mω0

(
π(n+α)

N

)
+ iπβ

]
(127)

where ω′′
0 (x) is the second derivative of ωμ(x) with respect

to μ at criticality. Now using in equation (127) instead of
ω′′

0 (x) the function f(x) given by equations (124)–(126)
and instead of ω0(x) the function ω(x) given by equa-
tion (123) we can see that the second derivative of the
logarithm of the partition function with twisted bound-
ary conditions Z

′′
α,β(M,N, 0, 0) at μ = 0, d = 0 given

by equation (127) is exactly coincide with expression for
Gα,β(ρ,M,N) given by equation (122). Thus the exact
asymptotic expansion of the Gα,β(ρ,M,N) for (α, β) =
(0, 1/2), (1/2, 0) can be found along the same lines as in
the case of Z ′′

α,β(M,N, 0, 0) (see [23])

Gα,β(ρ,M,N)=
2κS
π

[
ln

√
S

ξ
+CE +ln

25/2

π
−2 ln |θα,β|

]

− κπξ

∞∑

p=1

1
p(2p)!

(
π2ξ

S

)p−1

Re Ω2p K
α,β
2p , (128)

where CE is the Euler constant.
The differential operators Ω2p that have appeared here

can be expressed via coefficients ω2p = ε2p + λ2p
∂

∂τ0
as

Ω2 = ω2,

Ω4 = ω4 + 3ω2
2, (129)

...

and the coefficients k and ε2p can be obtain from the
asymptotic expansion of the f(x), which can be written
in the following form

f(x) =
κ

x

[
1 +

∞∑

p=1

κ2p

(2p)!
x2p

]
=
κ

x
exp

{ ∞∑

p=1

ε2p

(2p)!
x2p

}

(130)
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where the coefficients ε2p and κ2p are related to each other
through relation between moments and cumulants [23].

After reaching this point, one can easily write down all
the terms of the exact asymptotic expansion for the resis-
tance between two maximally separated nodes RM,N (r, s)
on an M×N rectangular network of resistors with various
boundary conditions using equation (128). Thus the ex-
act asymptotic expansion for the resistance between two
maximally separated nodes can be written in the form
given by equation (9). The coefficients c(ρ) and c2p(ρ, ξ)
(p = 0, 1, 2, . . .) in the expansion equation (9).

1. Free boundary conditions.

For a rectangular M × N network of resistors with
free boundary conditions the coefficients c(ρ) and c2p(ρ, ξ)
(p = 0, 1, 2, . . .) in the expansion equation (9) explicitly
given by

c(ρ) =
2
√
ρ

π
(131)

c0(ρ, ξ) =
2
√
ρ

π

(
2 ln

8
π

+ 2CE − 1 − ln ξ(1 + ρ) − π
√
ρ

2

+
ρ− 1√
ρ

arctan
√
ρ− 2 ln θ2(i

√
ρ ξ)θ4(i

√
ρ ξ)
)

(132)

c2p(ρ, ξ) =
π2p−1ξp√ρ
p(2p)!

Ω2p

[
K

0,1/2
2p (i

√
ρ ξ)+K1/2,0

2p (i
√
ρ ξ)
]

for p = 1, 2, . . . (133)

where the differential operators Ω2p is given by equa-
tion (129) and K

0,1/2
2p (i

√
ρξ), K1/2,0

2p (i
√
ρξ) are the Kro-

necker’s double series which can all be expressed in
terms of the elliptic θk(i

√
ρξ) (k = 2, 3, 4) functions only

(see [23,48]).

2. Periodic boundary conditions.

For a rectangularM×N network of resistors with peri-
odic boundary conditions the coefficients c(ρ) and c2p(ρ, ξ)
(p = 0, 1, 2, . . .) in the expansion equation (9) explicitly
given by

c(ρ) =
√
ρ

2π
(134)

c0(ρ, ξ) =
√
ρ

2π

(
2 ln

4
π

+ 2CE − ln ξ(1 + ρ) − 2 ln θ2θ4

)

(135)

c2p(ρ, ξ) =
4p−1π2p−1ξp√ρ

p(2p)!
Ω2p

×
[
K

0,1/2
2p (i

√
ρ ξ) +K

1/2,0
2p (i

√
ρ ξ)
]

for p = 1, 2, . . . (136)

3. Cylindrical boundary conditions.

For a rectangular M × N network of resistors with
cylindrical boundary conditions the coefficients c(ρ) and

c2p(ρ, ξ) (p = 0, 1, 2, . . .) in the expansion equation (9)
explicitly given by

c(ρ) =
√
ρ

π
(137)

c0(ρ, ξ) =
√
ρ

π

(
2 ln

8
π

+ 2CE − ln ξ(1 + ρ)

− 2√
ρ
arctan

√
ρ− 2 ln θ2θ4

)
(138)

c2p(ρ, ξ) =
π2p−1ξp√ρ

2p(2p)!
Ω2p

[
K

0,1/2
2p (i

√
ρ ξ)+K1/2,0

2p (i
√
ρ ξ)
]

for p = 1, 2, . . . (139)

2.4.2 The exact asymptotic expansion for the resistance
between the central node and a node on the boundary
of the cobweb network

Let us consider the cobweb network. The cobweb lattice
Lcob is an M×N rectangular lattice with periodic bound-
ary condition in one direction and nodes on one of the two
boundaries in the other direction connected to an exter-
nal common node. Therefore there is a total of MN + 1
nodes. Topologically Lcob is of the form of a wheel consist-
ing ofN spokes and M concentrate circles. There has been
considerable recent interest in studying the resistance in
a cobweb and in a cobweb-like networks (see for example
references [119–124]).

The closed-form expression for the resistance between
arbitrary two nodes (x1, y1) and (x2, y2) for cobweb net-
work was obtained in [119]. In [72] it has been shown
that the resistance R cob

M,N (r, s) between the central node
O = (0, 0) and node on the boundary of the network
A = (x,M) can be expressed in terms of G0,1/2(ρ,M,N)
only, namely

R cob
M,N (r, s) = −s

2
+

√
sr

4S
G0,1/2(ρ, 2M + 1, N) (140)

where S = (M + 1/2)N and G0,1/2(ρ, 2M + 1, N) is given
by equation (122) with α = 0, β = 1/2 and M replaced by
2M + 1

G0,1/2(ρ, 2M + 1, N) = (2M + 1) Re
N−1∑

n=0

f
(π n
N

)

× coth
[
(2M + 1)ω

(π n
N

)
+
iπ

2

]
(141)

= (2M + 1) Re
N−1∑

n=0

f
(π n
N

)
tanh

[
(2M + 1)ω

(π n
N

)]
.

(142)

The function ω(x) is given by equation (123) and function
f(x) is given by

f(x) =

√
1 + ρ sin2 x

sinx
. (143)
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After reaching this point, using equation (128) one can
easily write down all the terms of the exact asymptotic
expansion for the resistance between the central node and
a node on the boundary of the M ×N cobweb network of
resistors R cob

M,N (r, s). Thus the exact asymptotic expansion
for the resistance R cob

M,N (r, s) can be written in the form
given by equation (9). The coefficients c(ρ) and c2p(ρ, ξ)
(p = 0, 1, 2, . . .) in the expansion equation (9) explicitly
given by

c(ρ) =
√
ρ

2π
(144)

c0(ρ, ξ) =
√
ρ

2π

(
2 ln

8
π

+ 2CE − 1 − ln ξ(1 + ρ)

+
2√
ρ

arctan
√
ρ− 4 ln θ2(i

√
ρ ξ)
)

(145)

c2p(ρ, ξ) = −π
2p−1ξp√ρ
2p(2p)!

Ω2p K
0,1/2
2p (i

√
ρ ξ)

for p = 1, 2, 3, . . . (146)

where ξ = (2M + 1)/N , which is almost two times larger
then true aspect ratio of the lattice ξtrue = M/N . The
differential operators Ω2p is given by equation (129) and
K

0,1/2
2p (i

√
ρ ξ) is the Kronecker’s double series which can

all be expressed in terms of the elliptic θk(i
√
ρ ξ) (k =

2, 3, 4) functions only.

3 Conclusions

We have consider the exact finite-size corrections and
boundary effects for the critical two-dimensional free-
fermion lattice models. We have shown that the method
of references [23,45] is quite useful for calculating exact
finite-size corrections for the free models of statistical me-
chanics, including Ising model, dimer model, resistor net-
work and spanning tree model. In this review article we
tries to unify the different results on exact finite-size cor-
rections to a common framework. The main results, which
is reviewed in this review article can be summarized as fol-
low:

We have found that the exact asymptotic expansion
of the free energy can be written in the form given by
equation (1) for the following models:

(i) For the Ising model on the M×N square lattice with
three different boundary conditions: periodic, helical
and Brascamp-Kunz.

(ii) For the dimer model on theM×N square lattice with
five different sets of boundary conditions: periodic,
cylindrical, free Mobius strip and Klein bottle.

(iii) For the spanning-tree model on the M × N square
lattice with five different sets of boundary condi-
tions. We have explained an apparent discrepancy
between conformal field theory predictions and a two
dimensional spanning tree model with periodic and
free boundary conditions [79,80]. We have also ob-
tained the corner free energy for free boundary con-

ditions. We proved the conformal field theory pre-
diction about the corner free energy and have shown
that the corner free energy, which is proportional to
the central charge c, is indeed universal. We find the
central charge in the framework of the conformal field
theory to be c = −2.

Except the bulk free energy fbulk all other coefficients in
the exact asymptotic expansion of the free energy of the
Ising model, dimer model and spanning tree model are
sensitive to the boundary conditions.

We have also study the two-point resistor problem on
planar M ×N rectangular lattices with free, periodic and
cylindrical boundary conditions. Using the exact expres-
sion for the resistance between arbitrary two nodes for
finite rectangular network obtained in [17] and the al-
gorithm of [23], we derive the exact asymptotic expan-
sion of the corner-to-corner resistance on the rectangu-
lar network for all above mentioned boundary conditions.
We have found that the exact asymptotic expansion can
be written in the form given by equation (9). We have
found that all coefficients in this expansion are sensitive
to the boundary conditions. All corrections to scaling are
analytic.

It is of interest to apply the method of refer-
ences [23,45] to calculate exact finite-size corrections for
other exactly solvable models on various lattices with var-
ious boundary conditions, so that some general features of
such finite-size corrections could be found.
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