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Abstract. A variety of uses has been proposed for synthetic chemically powered nanomotors that exploit
their autonomous directed motion. The collective dynamics of these and other active particles display
features that differ from their equilibrium analogs. We investigate the collective dynamics of chemically
powered diffusiophoretic motors attached to a filament. Rotational Brownian motion is reduced substan-
tially when a motor is attached to a filament and this improves motor performance. When many motors are
attached to the filament, structural and dynamical correlations that may extend over long distances arise.
While some features of these correlations are due to packing on the filament, there are nonequilibrium
effects that are due to the local concentration gradients of reactive species produced by all motors. As
the motor density on the filament increases beyond a critical value, the average motor velocity projected
along motor internuclear axis switches from forward to backward directions. Knowledge of the collective
dynamics of motors on filaments should prove useful when designing ensembles of synthetic motors to
perform tasks such as cargo transport involving delivery of material to specific regions in complex media.

1 Introduction

The collective behavior of active matter, where the con-
stituent elements are either autonomous agents or are
forced by external means, is very different from that of
equilibrium systems. Active self-assembly, dynamic clus-
tering, swarming, and giant number fluctuations are a few
examples of phenomena observed in these systems. The
mechanisms governing this diverse nonequilibrium behav-
ior are currently under investigation and efforts are be-
ing made to elucidate the general principles that under-
lie the phenomena [1–3]. The active systems being stud-
ied are varied. They include, among others, birds, fish,
microorganisms, forced granular particles and synthetic
self-propelled motors. Reviews of active matter have been
written that describe these phenomena and discuss the
simulations and theoretical studies that have been carried
out to help interpret the observed behavior [4–12].

Often studies of the collective dynamics of active sys-
tems are carried out for systems with two- or three-
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dimensional geometries. The collective dynamics in two-
dimensional systems are easy to visualize and are relevant
for many systems where the active motion takes place on
substrates. The dynamics seen in three-dimensional sys-
tems is more varied. In the biological realm, particularly in
the interior of a cell where molecular motors carry out nu-
merous transport and other functions, molecular machines
execute directed motion through conformational changes
and walk on filaments [13, 14]. Usually, many motors of
different kinds are attached to biomolecular filaments and
they often act in a cooperative fashion to achieve their
goals [15]. In this paper we explore some of the collective
properties of synthetic motors that are attached to poly-
meric filaments. This investigation was prompted both
by the fact that the directed motion of very small syn-
thetic motors in bulk solution is strongly compromised by
thermal fluctuations that give rise to rotational Brown-
ian motion, and by potential applications that involve the
dynamics of many such motors in complex geometries, or
even in the cell.

In contrast to biological motors, many synthetic mo-
tors do not require conformational changes for their di-
rected motion [16]. Studies of the dynamics of single mo-
tors and their collective behavior are topics of current re-
search. For example, experimental studies of the active
aggregation of Au-Pt Janus particles [17], self-assembly
of Janus particles with hydrophobic hemispheres [18], and
clustering in light-activated particle suspensions have been
carried out [19–21]. Theoretical studies have indicated the
presence of collective rotating structures in the absence of
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long-range particle velocity alignment [22,23], the impor-
tance of hydrodynamic interactions on collective phase be-
havior [24], the existence of orientational alignment among
active particles [25], and the presence of diverse types of
collective behavior of diffusiophoretically propelled Janus
colloids [26].

The specific focus of this study is on synthetic mo-
tors that operate by chemically powered diffusiophoretic
mechanisms [16, 27, 28]. In particular, we investigate the
collective behavior of many such motors attached to a fil-
ament. The motor is modeled by a stiff chain composed of
three linked beads. Chemical reactions that convert fuel
into product take place on the surface of the catalytic
bead in a motor, and the self-generated concentration gra-
dients of reactive species gives rise to motor propulsion1.
These motors are able to bind to a filament and we study
their motions on the filament. We show that correlations
of motor positions, orientations and velocities exist for
sufficiently high motor concentrations. While the collec-
tive dynamics of active particles can arise from mecha-
nisms that depend on effects such as local orientational
alignment and hydrodynamic interactions, the collective
dynamics of chemically powered motors is also strongly
influenced by chemical concentration gradients. Many of
the collective effects we find for motors on filaments can be
traced to coupling through chemical concentration fields.

The outline of the paper is as follows. In sect. 2, we
describe the model for the motor and filament, as well
as the reactive mesoscopic method used to simulate the
motor dynamics on a filament. The remaining sections
present our investigations of how the concentration fields
of reactive species and motor number affect the collective
behavior. Section 3 shows some of the dynamical features
of the velocities and orientations that are found as a func-
tion of motor density on the filament. Section 4 concerns
steady-state correlations in the average positions, orien-
tations and velocities, while sect. 5 deals with time cor-
relations of collective motor dynamical variables. In these
sections effects due to the local concentrations of reactive
species arising from all motors are isolated by comparing
results from motors that produce common- and distinct-
product molecules. The conclusions of the paper are given
in sect. 6.

2 System description

Coarse-grain models of both the motor and the filament
on which it moves have been constructed as follows. The
filament is a linear chain composed of beads (F ). Neigh-
boring beads in the chain are linked by harmonic springs,
Vbond = 1

2ks(r−rF
0 )2, where ks is the spring constant, and

rF
0 is the equilibrium bond length. The bending stiffness

of the filament is accounted for by a three-body potential,
Vbend = kb[1− cos θ], where kb is the bending energy, and
cos θ = r̂i−1,i · r̂i,i+1, where r̂ij = (ri − rj)/|ri − rj |.

1 The mechanism is similar to that for a sphere dimer motor.
See [29].

Fig. 1. Sketch of two chemically powered motors on the fila-
ment. Each motor consists of three beads: catalytic bead (C),
neutral linker bead (L), and noncatalytic bead (N). The fila-
ment is a linear chain of beads (F). A catalytic reaction occurs
when a fuel particle (A) encounters a C bead and is converted
into a product particle (B). For future reference, motors are
color coded by their orientation on the filament: a motor col-
ored blue indicates that it is oriented so that the C head bead
points to the right, whereas for motors colored red the head
C bead points to the left. The catalytic beads in these motors
are light blue and light red, respectively.

The motor is a short chain of three beads linked by har-
monic springs with the same form as those for the filament
but with equilibrium bond length rM

0 , while the bending
stiffness is taken into account by adding a spring linking
the end beads with an equilibrium bond length 2rM

0 . The
filament and the three-bead motor are similar to those of
a three-bead oligomeric motor on a filament studied ear-
lier [30] but the dynamical model is completely different.
A chemical self-diffusiophoretic mechanism, where a reac-
tion on a motor catalytic bead generates a concentration
gradient that is felt by the other motor beads, is responsi-
ble for the directed motion of the motor. More specifically,
each motor comprises catalytic (C) and noncatalytic (N)
end beads linked by a neutral bead (L). The propulsion
mechanism of this three-bead motor is similar to that of a
sphere dimer motor [29] except that a neutral linker bead
has been added in order to provide better control of the
orientation of the motor when attached to the filament.

The motors and filament are contained in a rectangular
box with dimensions Lx = 40 and Ly = Lz = 20 and peri-
odic boundary conditions in all directions. The filament is
oriented along the x-axis and is immobilized by applying
an additional force to eliminate its center-of-mass trans-
lation [31]. The simulation volume also contains a num-
ber NS = NA + NB of A (fuel) and B (product) solvent
particles. While solvent particles interact among them-
selves through multiparticle collisions [32–35], interactions
with the motor and filament beads are taken into account
by repulsive potentials VαS(rij) with strength εαS , where
rij = |ri−rj | is the separation of particle i of type α from
particle j of type S, and α = C,L,N, F and S = A,B
(see appendix A for details).

A schematic picture showing motors attached to the
filament is given in fig. 1. A concentration gradient is gen-
erated by an irreversible chemical reaction, C+A → C+B
that occurs with unit probability when a fuel particle en-
counters the C bead on a motor, converting a fuel A par-
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Table 1. The average number of motors attached to the fila-
ment, Non, the average line density of motors attached to the
filament, nmf = Non/Lx, the average time that a motor re-
mains attached to the filament ton (×105) and the fraction of
the total simulation time tsim = 5 × 105 that a motor remains
attached, fton = ton/tsim, for various values of the number of
motors in the system, Nm, whose corresponding average den-
sity is nm = Nm/V (×104). N ′

on is the number of motors that
are attached to the filament for the entire simulation length.

Nm 4 6 8 10 12 14 16

nm 2.50 3.75 5.00 6.25 7.50 8.75 10.0

Non 3.99 5.99 7.96 9.96 11.88 13.26 13.63

nmf 0.10 0.15 0.20 0.25 0.30 0.33 0.34

ton 4.9 4.9 4.4 4.5 3.96 2.11 1.23

fton 0.98 0.98 0.88 0.90 0.79 0.42 0.25

N ′
on 3.98 5.94 6.38 9.06 10.02 7.5 6.2

ticle into a product B particle. The interactions of the
product B species with the noncatalytic end beads have
εNB = 0.1 ε interaction strengths, while εCA = εCB =
εLA = εLB = εNA = ε. For these interaction parame-
ters an individual motor in solution will move in a direc-
tion with the C bead at its head. In order to maintain
the system in a nonequilibrium steady state the reaction
B → A, that removes product B and replenishes fuel A is
carried out in the bulk of the solution. The reactive version
of multiparticle collision dynamics is used to effect these
reactions [36]. Additional details concerning the algorithm
and system parameters are given in appendix A.

3 Motor orientation and velocity

When a filament is present in the system motors tend to
bind to it as a result of solvent depletion forces. Once
bound, thermal fluctuations may cause motors to detach
but they remain attached for long periods of time. When
motors are attached to a filament one expects that ori-
entational Brownian motion will be partially suppressed
leading to longer reorientation times. In such a case the
time domain over which ballistic motion induced by self-
propulsion persists will be longer and the resulting en-
hanced directed motion could be exploited in applications.

The orientational relaxation time τR can be computed
from the decay of the time-dependent orientational cor-
relation function, Cu(t) = 〈û(t) · û(0)〉. Here û(t) =
(RC(t) − RN (t))/|RC(t) − RN (t)| is a unit vector along
the internuclear axis from the N bead to the C bead in
the motor. This relaxation time is in fact greatly increased
for motors attached to filaments. We find τR ≈ 245 for a
motor in solution, which is about 425 times shorter than
τR ≈ 104 000 when the motor is attached to the filament.

The line density of motors on the filament, defined as
the average number of motors attached to the filament per
unit length of filament, nmf = Non/Lf , where Lf = Lx is
the filament length, is an important quantity that deter-
mines the nature of the collective behavior. In particular,

as nmf increases, so do the interactions among motors.
Such interactions can cause motors to detach more fre-
quently and lead to coupling among motors mediated by
species concentration fields. Table 1 lists the number of
motors (Nm) in the system with volume V and the cor-
responding motor density in the system (nm = Nm/V ),
the average number of motors attached to the filament
(Non) and the corresponding motor line density (nmf),
the average length of time a motor is attached to the
filament (ton), and the fraction of the total simulation
time (fton) that a motor is attached to the filament. For
small nmf < 0.25, ton is comparable to the total simu-
lation time tsim = 5 × 105 and nmf steadily increases.
For nmf > 0.25, nmf rapidly reaches a saturation value
and fton steadily decreases. To confirm that these results
are robust and are not significantly affected by the peri-
odic boundary conditions, simulations with Lx = 80 and
Nm = 28 (nm = 8.75× 10−4) were performed. The results
show that nmf = 0.32, comparable to that in table 1 for
the smaller system size.

Since the filament lies along the x-axis and is nonpo-
lar, a motor attached to it can move in the +x̂ or −x̂
directions, giving rise to a quasi-one-dimensional trajec-
tory along the x-axis. This trajectory may be monitored
by observing the x-component of the L bead position,
Rx(t) = RL(t) · x̂; the motor orientation may be described
by ux(t) = û(t) · x̂.

Figure 2(a) shows the trajectories of a system with
motor line density nmf = 0.1. The correlation between the
direction of motor movement and its orientation can be
seen by considering one of these motors indicated in red.
The orientation ux(t) of this motor is plotted in panel (b).
Starting from an initial position near Rx = 0, one can see
that the motion of this motor in a given direction along the
filament is strongly correlated with its orientation in that
direction. This correlation persists for long periods of time.
For example, at time t ≈ 3×105 the motor rapidly flips its
orientation from ux ∼ −1 to ux ∼ +1, and consequently
the motor switches its propagation direction from −x̂ to
+x̂. This is the behavior that one would expect for a single
motor or an ensemble of independent motors.

This is no longer the case when the motor line density
is larger. Referring to data in fig. 2 for nmf = 0.33, in
the time interval 105 < t < 3 × 105 one can see that
the motor moves in the +x̂ direction, which is opposite
to its orientation. By contrast, for nmf = 0.25 there is no
pronounced directed motion.

The change in character of motor dynamics with motor
line density nmf can be seen clearly in the variation of the
average of the motor velocity projected on its orientation,

〈Vu〉 =

〈
1

Non

Non∑
i=1

Vi(t) · ûi(t)

〉
, (1)

where the angle brackets denote a time average and en-
semble average over 50 realizations of the dynamics. The
velocity of motor i is computed as Vi(t) = (Ri(t + Δt) −
Ri(t))/Δt with Δt = 5000. Figure 3 shows 〈Vu〉 as a func-
tion of nmf (black circles). While 〈Vu〉 > 0 for nmf < 0.25,
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Fig. 2. Motor trajectories Rx(t) for different numbers of mo-
tors on the filament: (a) Nm = 4, (c) Nm = 10 and (e) Nm = 14
motors. The orientation (ux) of the motors indicated by the red
trajectories in panels (a), (c) and (e) are plotted in panels (b),
(d) and (f), respectively. Videos of the simulations for panels
(a), (c) and (e) are available in the Supplementary Material.
The motors indicated by red trajectories are labeled by black
arrows in the video.

it is negative for nmf > 0.25 so that nc ≈ 0.25 is the critical
motor line density beyond which the motors, on average,
start to move in a direction opposite to that of their nat-
ural propagation direction when isolated. For sufficiently
high motor line densities interactions among many mo-
tors lead to a change in the character of the average mo-
tor velocity. (Backward motions were also observed when

Fig. 3. The average value of the projection of the velocity of a
motor along its internuclear axis, 〈Vu〉, as a function of the mo-
tor line density, nmf , for common-product molecules (black cir-
cles) and distinct-product molecules (red circles). The dashed
line indicates zero mean velocity.

the filament length and Nm were doubled for nmf > 0.25,
which indicates that these results do not depend signifi-
cantly on system size.)

The system contains Nm identical motors and each mo-
tor converts fuel A to product B, a product common to
all motors. We now show that it is the effect of the net B
concentration field that gives rise to the correlations dis-
cussed above. To examine this effect we consider a similar
ensemble of Nm motors but now each motor i produces a
distinct product Bi, so that only the self-generated con-
centration gradient of Bi is responsible for the propulsion
of that motor. The values of 〈Vu〉 for motors producing
distinct-product molecules are plotted in fig. 3 as a func-
tion of nmf (red squares). Now 〈Vu〉 > 0 for all nmf .

The change in character of the average number den-
sity field of B product particles, nB , in the vicinity of a
motor attached to the filament is shown in fig. 4. This
figure plots nB(n1, n2) as a function of two in-plane coor-
dinates (n1, n2). (A detailed description of how the con-
centration field was determined in given in appendix B.)
For nmf = 0.1, the density field is higher at the inter-
face between the L and N beads than at the rear surface
of the N bead. Therefore, a motor is expected to move
forward in the same direction as its orientation. While
the nB(n1, n2) density is negligible at the rear surface of
the noncatalytic bead for nmf = 0.1, it increases with in-
creasing nmf . When nmf = 0.33 the nB(n1, n2) density at
this location is somewhat higher than that at the N -L in-
terface. Consequently, the product concentration gradient
across the noncatalytic bead for nmf = 0.33 is in a di-
rection opposite to that for nmf = 0.1, indicating motion
opposite to its orientation. For nmf = 0.25 the concen-
tration fields at these locations become comparable and a
less strong propulsion is expected and found.

To confirm the redistribution of product particles in
the vicinity of the N bead, the angular dependence of
the average product concentration field in the interaction
zone of the N bead, 〈nB〉, was computed and is shown
in fig. 5. The angle θ is defined as θ = cos−1(û · r/|r|),
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Fig. 4. The average number density field of B product particles in the vicinity of the motor, nB(n1, n2), for (a) nmf = 0.1,
(b) nmf = 0.25 and (c) nmf = 0.33.

Fig. 5. The angular distribution of the average number of B
product particles in the interaction zone of the N bead for
nmf = 0.1 (black circles), 0.25 (red squares) and 0.33 (blue
triangles).

where r is the position of a B particle relative to the N
motor bead; therefore, θ ≈ π/4 and θ = π correspond
to the front (N -L interface) and the rear surface of the
N bead, respectively. Only the particles located in the
interaction zone are taken into account, i.e., the condition
σNS < |r| < 21/6σNS must be satisfied, where σNS =
(dN + dS)/2 is the sum of the radii of N and S particles.
For nmf = 0.1, the maximum of 〈nB〉 lies near θ ≈ π/4,
indicating forward motor motion. However, when nmf =
0.33, 〈nB〉 is largest when θ ≈ π indicating a switch of
motor propagation direction. As might be anticipated, for
nmf = 0.25, the motor does not exhibit directed motion
as a result of the approximately flat angular distribution
of 〈nB〉.

4 Correlations in motor positions, orientations
and velocities

Steady-state correlations of the motor positions, orienta-
tions and velocities develop when many motors are at-
tached to the filament. Positional correlations can be
probed by examining the L-L radial distribution function,

g(x) =

〈
Lf

N2
on

Non∑
j<i=1

δ (|RL,xi − RL,xj | − x)

〉
, (2)

ψ
ψ

Fig. 6. The radial distribution function g(x), the spatial cor-
relation functions of orientational ordering ψφ(x) and velocity
ψv(x) for common-product simulations are shown in (a), (c)
and (e), and distinct-product simulations in (b), (d) and (f),
respectively. Results for nm = 0.1, nm = 0.25 and nm = 0.33
motors are shown as black circles, red squares and blue trian-
gles, respectively.

where RL,xi is the x-component of the position of bead
L of motor i and Lf is the filament length. The bracket
again signifies an average over time and realizations. (For
notational convenience we have not explicitly indicated
the time dependence of the variables in the average.) Fig-
ure 6 plots g(x) for nmf = 0.1 (black circles), 0.25 (red
squares) and 0.33 (blue triangles). There is a well-defined
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peak at x � 6 for nmf = 0.1 and 0.25, which shifts to some-
what smaller values for nmf = 0.33. This peak corresponds
to the average distance between two neighboring motors.
The radial distribution function for nmf = 0.33 shows the
presence of long-range order. It has several peaks that
extend to x ≈ 17.5, half the size of the simulation box.
Figure 7 shows motor configurations on the filament for
several values of nmf . The signatures of long-range order
for nmf = 0.33 can be seen in this single configuration.

Local orientational ordering along filament can be de-
scribed by the orientation correlation function

ψu(x) =

〈
1

n(x)

Non∑
j<i=1

uxiuxjδ (|RL,xi − RL,xj | − x)

〉
,

(3)
where uxi is the x-component of the unit vector specify-
ing the orientation of motor i, n(x) =

∑Non
j<i=1 δ(|RL,xi −

RL,xj | −x) is the number of motor pairs separated by the
distance x. Using this definition, two motors separated by
the distance x have the same or opposite orientations when
ψu(x) > 0 or ψu(x) < 0, respectively, whereas ψu(x) = 0
indicates that there is no preferential orientation for the
two motors in the pair. In fig. 6 we see that for small motor
density (nmf = 0.1, black circles), negative values of ψu(x)
are found for small separations since motors with opposite
orientation have a higher probability to encounter each
other. There is a peak at x � 6, which, in conjunction with
the maximum found in g(x) at the same x, suggests that
two neighboring motors tend to align. The function ψu(x)
takes positive values for large x at low motor densities
on the filament since, for low densities, motors with sim-
ilar alignment will propagate in the same direction with
only rare encounters. Figure 7 shows an instantaneous con-
figuration for nmf = 0.1 where several motors propagate
in the same direction. As the motor density increases to
nmf = 0.24, the peak at x � 6 sharpens. In addition, ψu(x)
vanishes at x = 1 and x = 20 because the frequency of
motor reorientations increases with an increase in nmf . An
instantaneous configuration for this motor number is also
shown in fig. 7. For nmf = 0.33, which is larger than the
critical number nc, additional peaks are found in ψu(x) at
the same positions as the maxima of g(x), signaling the
development of long-range orientational order.

Local directional ordering is described by the local ve-
locity correlation function,

ψv(x) =

〈
1

n(x)

Non∑
j<i=1

vxivxjδ (|RL,xi − RL,xj | − x)

〉
,

(4)
where vxi = x̂ ·Vi/|Vi| is the x-component of the normal-
ized velocity of motor i. This function measures the de-
gree of correlation of directed motion between two motors
separated by a distance x. The positive (negative) values
of ψv(x) indicate whether two motors are moving in the
same (opposite) velocity directions, whereas ψv(x) = 0
indicates no correlation in the directed motion of two mo-
tors on the filament. For nm = 0.1 we saw that the ori-
entations of two motors are antiparallel at short distances

Fig. 7. Instantaneous configurations of motors on the filament
drawn from the trajectories in fig. 2: (a) nmf = 0.1 at t =
3 × 105, (b) nmf = 0.25 at t = 3 × 105, and (c) nmf = 0.33 at
t = 2.5×105. The gray beads shown in panel (c) belong to the
motor that detaches from the filament.

and parallel at long distances. Also, on average, the ve-
locity of a motor projected onto its orientation is posi-
tive for small nmf . Consequently, one expects and finds
in fig. 6 negative and positive values of ψv(x) at short
and long distances, respectively, for small nmf . As nmf in-
creases to nmf = 0.25, ψv(x) takes positive values for all
x indicating collective motor motion on the filament. This
collective motion for nmf = 0.25 can be seen in the mo-
tor trajectories in fig. 2; for example, in the time interval
2.5×105 < t < 3×105, the motors move as a transient clus-
ter toward +x̂ followed by motion in the reverse direction.
When the motor number further increases to nmf = 0.33,
enhanced directional ordering is observed that gives rise
to the coherently moving motor trajectories shown in this
figure.

One may ask if the correlations described above arise
simply from packing on the filament or have important
contributions due to other sources. We examine effects
arising from the local product concentration field by again
comparing the results described above with those for mo-
tors that produce distinct products.

The same correlation functions for distinct-product
motors are also plotted in fig. 6. The radial distribution
functions for nmf = 0.1 and 0.25 are similar to those
for motors that produce common products; however, for
nmf = 0.33 the long-range correlations decay more rapidly.
There is negligible orientational ordering for nmf = 0.25
and 0.33 for distinct products (note the absence of a
strong peak at x ≈ 6 that arises from the alignment of
active neighboring motors). Correlations in directional or-
dering are substantially reduced for distinct-product mo-
tors.

These results suggest that for nmf > nc correlations in
g(x) are largely due motor crowding on the filament but
the structure is affected by the local product concentra-
tion field. Orientational order seen in ψu(x) is substan-
tially smaller for distinct-product motors. The long-range
orientational order that is observed for motors producing
common products indicates that configurations where the
rear N bead of one motor and the front C bead of a neigh-
boring motor are adjacent occur with high probability. In
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Fig. 8. Autocorrelation functions of system orientational
CUU (t), velocity CV V (t) and orientation-velocity cross-corre-
lation function CUV (t). Results for common-product simula-
tions are shown in (a), (c) and (e), and distinct-product sim-
ulations in (b), (d) and (f), for nmf = 0.1 (black circles),
nmf = 0.25 (red squares) and nmf = 0.33 (blue triangles).

such a packed alignment, the number of product particles
in the vicinity of the N beads increases.

5 Collective dynamical properties

The dynamics of the collective behavior can be character-
ized by time correlations of various motor variables. These
correlations take the general form

CFG(t) =
〈(F (t) − F̄ )(G(0) − Ḡ)〉

σF σG
, (5)

where F (t) and G(t) are collective motor variables with
means F̄ and Ḡ, and standard deviations σF and σG, re-
spectively. Results will be presented for motors that pro-
duce both common and distinct products in order to fur-
ther assess coupling that has its origin in the product con-
centration field.

The instantaneous mean orientation is defined as

U(t) =
1

Non

Non∑
i=1

uxi(t). (6)

Figure 8 shows CUU (t) for common- and distinct-product
motors with nmf = 0.1 (black circles), 0.25 (red squares)
and 0.33 (blue triangles), respectively. The correlation
functions for nmf = 0.1 and 0.25 are similar for both kinds
of motor. This suggests that when nmf < nc the motor
reorientation rate has only a weak dependence on the in-
teractions mediated by the product concentration field.
For nmf = 0.33, CUU (t) decreases more slowly for com-
mon products. This can be attributed to the enhanced
long-range orientational ordering along the filament seen
in ψu(x).

The instantaneous mean velocity projected on the fil-
ament direction is defined as

V (t) =
1

Non

Non∑
i=1

vxi(t). (7)

For nmf = 0.1 and 0.33 one can see in the figure that
CV V (t) decays rapidly for t < 104, followed by a slow
decay for later times; however, for nmf = 0.25 this corre-
lation function decays rapidly to zero without exhibiting a
significant long-time decay region. As discussed earlier, for
this value of nmf the concentration field is such that the
average velocity of a motor is near zero. The figure shows
that the decay is less rapid at long times for distinct prod-
ucts, since in this case the motors will move with nonzero
mean velocity.

The cross correlation between these two collective vari-
ables, CUV (t), most clearly reflects the importance of the
effects mediated by product concentration. This function
measures the time correlation of the system velocity pro-
jected on the system orientation, and positive (negative)
values of CUV (t) indicate forward (backward) collective
motion. Note the significant differences between these cor-
relation functions for common- and distinct-product sim-
ulations shown in fig. 8. For common-product motors a
switch from forward to backward collective motion was
found when nmf was larger than the critical motor den-
sity nc, while no significant changes in collective directed
motion were seen for distinct-product motors. Based on
these observations, backward motions are again evidently
caused by product-mediated interactions.

Finally, to investigate motor behavior on different time
scales, the mean square displacement

MSD(t) =

〈
1

N ′
on

N ′
on∑
i

|Rx,i(t) − Rx,i(0)|2
〉

(8)

was computed. Only the trajectories of the N ′
on motors

that are attached to the filament for the entire simula-
tion length were taken into account in the calculation of
MSD(t) plotted in fig. 9. In the course of the dynamics
motors can attach and detach from the filament as de-
scribed above. From table 1 we see that the fraction of
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Fig. 9. Log-log plot of the mean square displacement (MSD)
for common-product simulations for nmf = 0.1 (black solid
line), nm = 0.25 (red solid line) and nmf = 0.33 (blue solid
line). Fits to the MSD are indicated by black dashed lines for
nmf = 0.1, red dash-dot lines for nm = 0.25 and blue dotted
lines for nmf = 0.33.

time a motor remains attached to the filament varies be-
tween approximately unity at small motor line densities
to 0.25 at the highest line density. Correspondingly, the
fraction of the number of motors that remain attached for
the entire simulation time, N ′

on/Non, varies between unity
and 0.45 as the density increases. Consequently, since the
time scale over which the diffusive motion was monitored
was taken to be approximately equal to the shortest av-
erage time a motor remains attached to the filament, the
MSD defined above will capture both short- and long-time
features of the diffusive motion on the filament. The re-
sults show a transition from short-time diffusive motion
to long-time super-diffusive motion for nmf = 0.1 (black
circles) and 0.33 (blue triangles) at t ≈ 103–104, while
for nmf = 0.25 (red squares) diffusive motion is seen at
both short and long times. These MSD data are consis-
tent with observed the short- and long-time behavior of
CV V (t). The long-time superdiffusive dynamics indicates
that the directed motion on the filament plays an impor-
tant role since the reorientation time is comparable to the
simulation duration.

The diffusive motion of the motors for nm = 0.25 is
again due to the fact that the product densities at the
rear surface of the N bead and at the N -L interface are
comparable. In this case there is no net directed force
acting on the motors, and this results in diffusive dynamics
for both short and long times.

6 Conclusion

This investigation of diffusiophoretic motors on filaments
showed that both the structural and dynamical collective
properties of many attached motors depend on their active
character and the mechanisms giving rise to this activity.
When the line density of attached motors is high, posi-
tional and orientational order has long-range correlations,
which is not due solely to simple packing effects. Instead,

various features of the correlations can be traced to inter-
actions among the motors mediated by chemical species
concentration gradients. This is a collective response of the
motors to the concentrations of reactive species produced
by all motors, in contrast to the response of a single mo-
tor to its self-generated concentration gradient that leads
to its propulsion. In addition to correlations between the
propagation direction of a motor and its orientation, there
are regimes where the mean velocity of a motor in the
ensemble points in a direction opposite to that it would
have when isolated. This backward motion occurs when
the number of motors on the filament exceeds a critical
density nmf = nc. These effects are mediated by the local
concentration field generated by different motors on the
filament and were confirmed by simulations in which each
motor responds to the concentration field generated only
by its own catalytic activity.

Part of the stimulus for this study is the observation
that biological molecular machines typically move along
biofilaments in order to carry out their functions, such as
cargo transport to specific locations. Synthetic chemically
powered motors that utilize phoretic mechanisms for their
propulsion can follow chemical gradients but are subject to
strong orientational Brownian motion that quickly turns
their ballistic motion into enhanced diffusion. By utiliz-
ing filaments in a fashion analogous to that of biological
motors, not only can orientational Brownian motion be
strongly suppressed, but motor motion can be targeted to
specific locations. However, in contrast to most biological
molecular motors where motion is biased in a particular
direction, the motors and filaments in this study were non-
polar so that motion is equally likely in either direction on
the filament. Thus, it could be interesting and useful to
design motors or filaments that introduce such a bias in
the motion. For example, as demonstrated in our previous
study [30], one can make a motor so that one of its end
beads is able to catalytically convert a filament bead into
a new form. Then, by introducing different binding affini-
ties of the motor beads with the filament, biased motion
on the filament can be obtained. The motor and filament
system in this study is only one of many possibilities that
can be constructed to enhance directed motion of diffusio-
phoretic motors in complex media.

This work was supported by a grant from the Natural Sciences
and Engineering Research Council of Canada. Computations
were performed on the GPC supercomputer at the SciNet HPC
Consortium. SciNet is funded by: the Canada Foundation for
Innovation under the auspices of Compute Canada; the Gov-
ernment of Ontario; Ontario Research Fund - Research Excel-
lence; and the University of Toronto [37].

Appendix A. Simulation method and
parameters

The motors and filament are contained in a 40σ ×
20σ × 20σ box. Each filament bead has diameter dF =
1.5σ, while the diameters of the motor beads are dC =
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dL = dN = 2σ. The motors interact with the fil-
ament through attractive solvent depletion potentials
plus repulsive Lennard-Jones (LJ) potentials, Vαα′(rij) =
4εαα′ [(σαα′/rij)12−(σαα′/rij)6+1/4]Θ(rc−r), where Θ(r)
is the Heaviside function, and the separation of particle i
of type α from particle j of type α′ is rij = |ri − rj |,
where α, α′ ∈ {C,L,N, F}. The interaction strength is
εαα′ when the separation rij < rc = 21/6σαα′ , with
σαα = (dα + dα′)/2. To compensate for strong depletion
forces between two motors the repulsive potential between
two beads in different motors has σMM = dC + σ. In-
teractions between solvent particles and motor and fil-
ament beads are also described by repulsive LJ poten-
tials with strength εαS and cutoff distance rc = 21/6σαS ,
where σαS = (dα + dS)/2. When solvent particles in-
teract with a motor or filament bead, they have effec-
tive diameter dS = 0.5σ. All solvent particles have the
same mass m, while the masses of the motor and fila-
ment beads are chosen to be mα = 4

3π(dα/2)3n0m so that
they have the same mass density as the bulk solution. The
time evolution of the entire system is simulated by hy-
brid molecular dynamics-multiparticle collision dynamics
(MD-MPCD) [33].

Multiparticle collision dynamics combines effective
multiparitcle collisions at discrete time intervals τ with
streaming between two consecutive collisions. Such col-
lisions are carried out by first sorting the particles into
cubic cells ξ with linear size a. We use the momentum-
conserving Anderson thermostat version of multiparticle
collision dynamics [38]. The postcollision velocity of par-
ticle i in cell ξ is given by

v′
i = Vi + vran

i −
∑

j∈cellξ

vran
j /Nξ. (A.1)

Here the components of vran
i are Gaussian random num-

bers with zero mean and variance kBT/m, Nξ is the to-
tal number of solvent particles in the cell, and Vξ is the
center-of-mass velocity of these Nξ particles. Grid shift-
ing was employed to ensure Galilean invariance [39, 40].
In the streaming steps, the dynamics of all the species
is governed by molecular dynamics under the potential
functions mentioned above. The collisions among solvent
particles are carried out using reactive multiparticle col-
lision dynamics [36]. Reactions in the bulk phase takes
place independently in each cell ξ at each MPC collision
step. In the cell ξ, the reaction B → A occurs with proba-
bility pξ

j(N
ξ
B) = 1 − e−aξ

2τ , where Nξ
B is the total number

B particles in the cell ξ and aξ
2 = k2N

ξ
B with k2 = 0.01

the bulk reaction rate.
The time evolution of the entire system is carried by

using velocity-Verlet algorithm with a molecular dynam-
ics time step, δt = 0.01 t0, and multiparticle collision time,
τ = 0.5 t0. The system temperature is kBT = 0.2 ε. In-
teraction strengths among motor and filament beads are
εMF = 0.1 ε and among motor beads εMM = ε. Sol-
vent particles interact with filament beads with strength
εSF = ε, and with motor beads through different strengths
as described in sect. 2. For distinct-product simulations,

the N bead in motor i and a product particle Bj produced
by motor j have interaction strength εNiBj

. If i = j, then
εNiBj

= 0.1 ε; otherwise εNiBj
= ε. Note that there are

no repulsive interactions among the beads in the same
motor and in the filament. There are NS = 140 700 sol-
vent particles in the system so that the solvent density
is n0 ≈ 9. The multiparticle collision cell size is a = σ.
Two neighboring beads in the motor or in the filament are
connected by harmonic springs with the spring constant
ks = 100 ε/σ2, and with equilibrium lengths rM

0 = 1.5σ
and rF

0 = σ. The bending stiffness of the filament is
kb = 100 ε. Results are reported in dimensionless units
with mass m, length σ, energy ε, and time t0 =

√
mσ2/ε.

Appendix B. Product number density field

The average number density field of B product particles,
nB(rS), in the vicinity of a motor attached to a filament
is determined by measuring the product density field in a
planar slice with normal perpendicular to the motor in-
ternuclear axis, û. We consider three orthogonal vectors:
two in-plane vectors n̂1 and n̂2, and a vector n̂3 = n̂1× n̂2

normal to the plane, and thus the density field can writ-
ten in terms of the in-plane coordinates nB = nB(n1, n2).
The orientation vector û is chosen to be n̂1 and the nor-
mal vector n̂3 should be chosen such that the plane is
nearly parallel to the filament, i.e., the plane intersects
the filament bead at distant position. To find n̂3, a vector
n̂′

3,

n̂′
3 =

RL − (RL · x̂)x̂
|RL − (RL · x̂)x̂| , (B.1)

is taken, which is in the radial direction around the x-axis
(the filament axis), and the normal vector n̂3 is then given
by

n̂3 =
n̂′

3 − (n̂′
3 · n̂1)n̂1

|n̂′
3 − (n̂′

3 · n̂1)n̂1|
. (B.2)

The next step is to determine the position of B par-
ticles in the planar slice. By using the position of the L
bead as the origin, the vector pointing from the origin to
the B particle at r is r′ = r − RL. The distance between
the B particle and the plane is d = |r′ ·n̂3|, and only the B
particles located in the slice are taken into account which
means the condition 2|d| < 0.1 must be satisfied, where
the slice thickness is 0.1. The coordinates of the B particle
projected on the plane can be computed by

rS = (r′ · n̂1)n̂1 + (r′ · n̂2)n̂2, (B.3)

where the S denotes the in-plane vector. Thus, the density
profile is computed by sorting the B particles into a 120×
80 lattice of cells, each of which has linear size of 0.1,
the same as the slice thickness, according to the in-plane
coordinates rS . The average density in each lattice cell is
given by the average over the ensemble of motors attached
to the filament and over time.
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