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Abstract. The power of any kind of network approach lies in the ability to simplify a complex system so
that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more
information than in a simple graph of only nodes and links. Adding information about times of interactions
can make predictions and mechanistic understanding more accurate. The drawback, however, is that there
are not so many methods available, partly because temporal networks is a relatively young field, partly
because it is more difficult to develop such methods compared to for static networks. In this colloquium, we
review the methods to analyze and model temporal networks and processes taking place on them, focusing
mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social
networks; information packets in computer networks; various types of signaling in biology, and more. We
also discuss future directions.

1 Introduction

To understand how large connected systems work, one
needs to zoom out and view them from a distance. In
other words, one needs a principled, consistent way of dis-
carding irrelevant information. A common way of doing
this is to represent the system as a network, where nodes
are connected if they interact. For many systems one has
more information that just about who interacts. Includ-
ing that information into a temporal network, of course,
goes against the idea of simplifying the system. Some-
times, however, it could be worth the effort in terms of
increased accuracy of predictions, increased mechanistic
understanding, etc. The drawback is that many of the
methods and models developed for static networks could
be inapplicable or could need non-trivial generalizations.

Introducing temporal networks like above, as an ex-
tension of static networks is natural. After all, they are
based on a mathematical structure that links entities
pairwise (only that they also encode the time of the in-
teraction). However, there are surprisingly deep differ-
ences, both in the history of the fields, the methods used
and the questions asked. For static networks [1,2], many
of the central concepts were developed to study social
networks – centrality measures, community detection,
similarity measures, etc. all come from network sociology.
As more disciplines came to embrace networks, these con-
cepts were either reinvented or adopted from social net-
work studies [3]. In a similar fashion, computer science pi-
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oneered temporal network theory. Still today, researchers
rediscover the ideas Leslie Lamport and others used in the
1970’s to build a theory of distributed computing [4].

At a very fundamental level, the mathematics of tem-
poral and static networks differ. We will refer to the basic
unit of interaction in a temporal network as a contact.
It captures information about a pair of nodes interacting
and the time of the interaction. A contact is the closest
extension of a link in static networks (but we will reserve
link for a static relationship between two nodes – usually
that they have one or more contacts). Being connected is
a transitive mathematical relation, i.e. if (i, i′) and (i′, i′′)
are links then i is connected through a path. This is true
also for directed static networks, but does not have to
be true for contacts in a temporal network. As a corol-
lary, there is no way of representing a temporal network
as a simple graph without either losing information or
changing the meaning of the nodes. Because of this and
other reasons, the analysis of temporal networks has be-
come rather different than static networks. Some aspects
(like visualization) are much harder and less fruitful than
for temporal networks; other techniques (like randomized
null-models) are richer and more powerful for temporal
networks.

Temporal networks is a very interdisciplinary
field. Computer scientists, physicists, mathematicians,
engineers, social scientists, medical researchers and the
occasional biologist all helped shape it to what it is.
The problems addressed reflect this diversity. They
range from classic computer science questions (like
constrained optimization [5], the traveling salesman
problem [6] or constructing minimal spanning trees [7])
to physics-influenced papers about phase transitions [8].
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They cover systems from cattle in farms [9] to citations
between scientific papers [10]. This diversity has boosted
the development and one may wonder how many other
disciplines that reached maturity this fast. The flip-side is
that many concepts have been rediscovered, or developed
in parallel. No wonder perhaps, the terminology is in
disarray. Even the topic of the field itself goes under
many names – time-varying networks, dynamic networks
and temporal graphs. Preparing this colloquium paper,
we planned to make a glossary to translate between
papers, but soon we came to realize that it is better not
to lead the reader into false security. Just be aware that
when you see a paper, for example, “temporal distance”
it could mean at least three different things, and look
up the definitions paper by paper. We will try to keep
the terminology from reference [11] as much as possible,
including that our default type of temporal network is
a stream of instantaneous contacts between two nodes
in discrete time. The second confusing situation (that
we, on the other hand, will try to sort out) is that
there are subtly different ways of thinking of temporal
networks – are they streams of contacts or static links
that are occasionally active? These mental pictures could
be mathematically equivalent but still shape the research
profoundly.

In this colloquium, we will give a general introduction
to temporal networks with an overview of the methods,
systems modeled and questions addressed. Specifically, we
focus on the development after our review paper [11]. We
do not cover studies of network evolution (where the net-
work is well-approximated as static for dynamic systems
confined to it) or algorithmic papers that do not aim at un-
derstanding real systems. We will not discuss adaptive net-
works [12–14] much either. These are networked systems
with a feedback between the topology and a dynamic sys-
tem on the network. They differ from temporal networks
by the time of events being of subordinate importance
to topology. In practice temporal network studies have a
stronger connection to empirical data and adaptive net-
work papers are mostly purely modeling studies.

2 Systems that can be modeled as temporal
networks

In this section, we will present the systems that people
have modeled as temporal networks. There are probably
many systems that will be added to this list in the near
future. In general, any system with pairwise interactions
and information about time could be modeled as a tem-
poral network. Simply speaking, for such modeling to be
practically useful, there should be some structure in both
time and network topology that affects dynamic systems
on the network. This is usually equivalent to saying that
the time scale of the dynamics of the network should not
be too far from the time scale of the dynamic system.

2.1 Human proximity networks

One of the most well-studied type of temporal networks
(but still far from fully understood) is that of human prox-
imity networks. These are networks that record when two
people have been close to each other in time and space. Re-
searchers have been very creative to measure this type of
interactions. The highest resolution data we are aware of
comes from radio-frequency identification (RFID) [15–23]
or infrared [24] sensors that can measure when people are
within a few meters apart and facing each other. Typically
one filters out very brief contacts, so the remaining con-
tacts capture people either in a face-to-face conversation
or in a crowd or gathering of some kind. WiFi [25–27] or
Bluetooth [28–32] sensors give almost the same resolution
(with a few meters lower positional accuracy but worse
angular resolution). Of these references, references [18,28]
are probably the most practically useful for those wanting
to set up their own studies. Zhang et al. [33] review many
aspects of temporal networks of human proximity.

The drawback with the above type of high-resolution
data sets is that such studies are time consuming and
costly. To sample larger populations, one needs to give
up the precision. One example of such includes the stud-
ies of Zhang et al. [34,35] of people logged onto a campus
WiFi networks (where a contact is recorded if two per-
sons are connected to the same WiFI router at the same
time). Similarly Yoneki et al. [36] use a network of people
found to be close in space and time by stationary scanners
for Bluetooth hardware addresses. In another large-scale
low-resolution study Sun et al. [37] study commuters in
Singapore. Here contacts were recorded for passengers on
the same bus. Kim et al. [38] use a network of spatiotem-
poral proximity of taxis in Shanghai (probably not so in-
teresting as far as human-to-human spreading or diffusion
processes goes, but perhaps for other types of information
spreading).

A special type of human proximity networks that have
got much attention is patient-referral networks, i.e. how
patients are transferred between wards of a hospital sys-
tem. Reference [39] was the first such study, to our knowl-
edge, studying 295 108 Swedish patients over two years.
This paper discusses how to best reduce the temporal net-
work to a static network (more about this in Sect. 3.2.3).
Walker et al. [40] study the spread of C. difficile among
166542 patients for 2.5 years. Donker et al. [41] study a
one-year data set of 1 676 704 patients in the Netherlands
that they, for privacy reasons, reduce to a metapopulation
model. There are also smaller-scale, higher-quality studies
using sensors rather than healthcare records, as mentioned
above [22,23,27].

Yet another kind of human proximity network (per-
haps so different that it needs a category of its own) are
networks of sexual contacts. These have the same quality
vs. quantity problem as mentioned before. Classic sexual
network studies like references [42,43] do not have the time
of the contacts. The only large-scale temporal network of
sexual contacts is the prostitution data of Rocha et al. [44]
where the sexual contacts are self-reported by Brazilian
sex buyers at a web community.
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Several proximity networks are publicly available (ana-
lyzing these is probably the best way to get started in tem-
poral network research). See the supplementary material
in references [25,45] and http://www.sociopatterns.
org/.

2.2 Animal proximity networks

Researchers have not only been interested in the temporal
proximity networks of humans. There is a relatively large
number of studies of temporal networks of animals. Mostly
populations of livestock modeled either as a metapopula-
tion networks (where one farm is one node and a transport
between two farms is a directed contact), or as a temporal
network of individuals where a contact represents being
at the same farm at the same time. Livestock here could
refer to either cattle [9,32,46–48] or swine [49]. Most such
networks are inferred by the records of the farms, and reg-
ulating authorities, but reference [9] uses RFID devices
attached to the ears of calves. Not only domesticated, but
also wild animals have been studied – zebras [50,51] and
capuchin monkeys [52] by GPS traces, and ants [53] by
visual observation. Psorakis et al. [54] study networks of
great tits from foraging records.

2.3 Human communication

Temporal networks of human communication maybe
needs no further introduction as another Eur. Phys. J.
B colloquium covers these [55]. They are together with
proximity networks the largest class of systems modeled
as temporal networks. A typical kind of such data comes
from call-data records of mobile phone operators [56–64].
These register who called whom, or who sent text mes-
sages to whom, typically restricted to one operator in one
country. Another type of communication networks are e-
mails. These data sets have been sampled from the email
accounts of a group of people. When using this data to cre-
ate a static network the boundary condition is major prob-
lem – should one include e-mails outside of the group [65]
or not [66]? This is perhaps an even larger problem for
temporal-network studies of large social media platforms
such as Twitter [67–69]. For some temporal network stud-
ies focusing on individuals, this becomes less of a problem,
since one has all actions recorded of the sampled peo-
ple [70]. The immediate boundary problem more or less
disappears if one studies complete records of closed Inter-
net communities or social networking services [71–76], but
even for these cases the dynamics is of course also shaped
by events and communication outside of the system.

2.4 Collaboration networks

A well-studied system in static networks that is naturally
time resolved is collaboration networks. In these, a con-
tact represents that people do something together, but not
necessarily at the same place (like proximity networks).
Scientific collaborations are a particularly well studied

topic, especially for static networks. Pfitzner et al. [31]
and Moinet et al. [77] are two exceptions in the tempo-
ral network literature, but note that early static network
papers like [78] also touch upon some temporal aspects
(even though the main question is why the static network
of accumulated contacts look like it does).

2.5 Citation networks

Another type of network that is well studied in the static
network literature is citation networks. Time puts a strong
constraint on the static structure of these networks in that
they have to be acyclic [79,80]. In other words, you have
to be able to order the nodes in such a way that all the
directed links between them point in one direction. They
are also special in the sense that all out-links of a node
(paper) happen simultaneously (when the paper is pub-
lished). Rosvall et al. [81] and Clough et al. [10] discuss
temporal aspects of this type of data.

2.6 Economic networks

Economic networks are perhaps a bit understudied as tem-
poral networks. Petri and Expert study a more than one
century long data set of trade between countries [82].
Kondor et al. [83] analyze Bitcoin transactions (with more
standard network approach than we discuss in this pa-
per, but the data itself is a temporal network). Zhao
et al. [84] study a temporal network of credit card transac-
tions. Redmond and Cunningham [85] investigate an on-
line site that administrates direct loans between the mem-
bers. Zhang et al. [86] study temporal network data sets
of the ship chartering and build-to-order ship markets.
Another paper by Zhang et al. [87] analyze the Chinese
venture capital market. Popović et al. [88] consider net-
works of countries inferred from financial news and com-
pare them to correlation networks from time series of the
price of credit default swaps. In principle, many of the
other network data sets studied in the (static) network lit-
erature [89,90] could be understood by temporal-network
methods.

2.7 Brain networks

In neuroscience, networks have become a useful tool to un-
derstand the organization function of the brain and how
different types of conditions alter the coupling between dif-
ferent regions [91–93]. The most common type of network
is constructed from temporal correlations of the oxygen
levels as measured by fMRI scanning. Even though fMRI
has a temporal resolution of the shortest time scale of
neuronal activities, it has proven fruitful to study as a
temporal network [94–96].

2.8 Travel and transportation networks

Networks of human transportation systems lend them-
selves well to a temporal-network modeling framework.
We already mentioned Sun et al.’s study of the bus
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transportation in Singapore [37]. Scholtes et al. [32] and
Rosvall et al. [81] study networks of airline connections.
Scholtes et al. [32] also study a temporal network of sub-
way travel in London. Kaluza et al. [97] investigate the
network of global ship transport. One could in principle let
the nodes represent vehicles instead of people (although
we are not aware of such studies). On a smaller scale,
Borgnat et al. [98] study a shared-bike system in a French
city. In the interface of transportation studies and ecology,
Banks et al. [99] study how transportation networks help
the migration of species.

2.9 Distributed computing

Many of the concepts that we discuss in this paper were,
as mentioned, first developed in the theory of distributed
computing systems [4,100]. After a slow start, the interest
in this area has increased a lot. One reason is the develop-
ment of cheap wireless devices, another is that there are
many theoretical challenges (especially when the units are
moving around in space or in and out of a network). The
goals for such systems are usually (quoting Michail [101])
“to compute (i.e. agree on) something useful or construct
a desired network or structure in such an adversarial set-
ting”. Another direction in this area is to determine the
condition for desirable properties to hold for a distributed
computing system under the dynamics (“churn”) of the
devices. These studies are to our knowledge all theoreti-
cal. It would be interesting to see more empirical temporal
network studies of distributed computing systems.

2.10 Ecological networks

In ecology, networks have mostly been used to capture in-
teractions between species [102,103]. Food webs, is a typi-
cal example of an antagonistic interaction between species,
describing what species that eats what other species.
There are also mutualistic interactions where both inter-
acting species benefit from the interaction (plants and pol-
linators being a typical example [104]). Both these types
of networks change with the season (and also from longer-
term effects due to climate change, etc.) and could there-
fore be studied with the methods described in this pa-
per. Another example of ecological networks that could
be, but to our knowledge has not yet been, studied are
interlinked habitats [105,106] – the underlying structure
for meta-community studies of the process of coloniza-
tion and extinction in networks of habitat patches. In a
long term, this network also changes in time. A third class
of potentially interesting networks in (behavioral) ecology
are networks of individual animals. This overlaps with the
animal proximity networks discussed above, but the in-
teraction could be more indirect [107]. An introduction of
temporal networks for ecologists and evolution theorists
can be found in reference [108].

2.11 Biological networks

In biology and the -omics there are also plenty of sys-
tems that could be modeled as temporal networks. Static

network modeling has mainly been applied to gene net-
works, protein-interaction networks and metabolic net-
works. Gene networks can capture many different types
of interactions – from regulatory networks (where a link
means that one gene activates or inhibits another), via
gene-fusion networks (of genes that can form hybrid
genes), to more abstract relationships between genes also
including information of their encoded proteins interact
and their distance to each other on the DNA [109]. Re-
searchers have studies some kind of temporal effects of all
these three levels of networked -omes, but it is fair to say
adding the dimension of time has been harder than for
some of the examples above. One cannot yet record when
a reaction happens in a metabolic network, at least on a
large scale, or when two proteins bind to each other. How-
ever, with future improved technologies this could change.

We will list a few examples of network biology in-
cluding time in the modeling. For none of these a con-
tact is not as precisely recorded as e.g. human proxim-
ity data. Kharchenko et al. [110] discuss the genetic con-
trol of metabolism, but the temporal component comes
from modeling, not measurement. Gyurkó et al. [111] dis-
cuss the use of networks of individual proteins to under-
stand the development of cancer. Taylor et al. [112] argue
that temporal reorganizations of the protein interaction
network (the network of proteins that do interact, not
the network of proteins that could interact) could pre-
dict and explain the development of breast cancer. Luo
and Kuang [113] predict essential proteins by temporal
networks. Rigbolt et al. [114] discuss temporal aspects of
gene networks in cell differentiation. As a final example,
West et al. [115] investigate the use of a temporal network
entropy [116] to understand the evolution of cancer.

2.12 Other systems

The topics above are by no means all the possible temporal
networks to be studied. We believe the readers of this
paper are more imaginative that the author, so we will
not try much harder. To mention two more systems, in one
extreme Ronhovde et al. [117] study temporal networks of
glassy states in complex materials, in the other extreme
are narrative networks (telling a story about a complex,
interdependent set of events) [118,119].

3 Representations of temporal networks

One can incorporate information about the time of con-
tacts between pairs of nodes in many ways. Which way to
chose could depend of what one’s data mean, how accurate
it is, what type of process the temporal network supports,
etc. Furthermore, it reflects the way the researcher con-
ceptualizes her system, and is usually not well motivated
in papers, even though it hides many assumptions about
the data. In this section, we will discuss some general ways
of representing temporal networks that sometimes trans-
late to a graphical representation (Fig. 1) [120] or a data
structure, sometimes not.
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Fig. 1. Illustration of a main challenge for temporal networks.
One of the great benefits of static networks (a) is that they
are great to support discussions of how a system is connected,
and how dynamics on top of it behave. Temporal networks
do not have this graphical simplicity, and are thus much less
intuitive (b). Illustration: Mi Jin Lee.

3.1 Lossless representations

We borrow the word “lossless” from audio compression
to denote representations that can carry all information
about a temporal network. They are all theoretically
equivalent, but do shape the way to think about a tempo-
ral network.

3.1.1 Contact sequences

Almost all empirical temporal-network data sets that we
have seen are of the form of lists of contacts, i.e. the two
node involved and the time of the interaction – either just
one time stamp (that also means that the time is dis-
cretized) or an interval (this case is sometimes called an
interval graph). This is a very easy and practical format
computationally – just a list of three or four columns –
nothing that would scare even an Excel-only user. Just as
good contact sequences are for computational purposes,

just as bad are they to think about the function of the
system or processes confined to the network. You would
never see a temporal network researcher jotting down a
contact sequence to discuss a new method. The reason is,
of course, that contact sequences lack any kind of visual
expression power.

3.1.2 Graph sequences or multilayer networks

Some authors present temporal networks as sequences
of static graphs [101,121,122], or, equivalently, layers in
a multilayer network [123–125]. Depending on the sys-
tem studied, this could be a very powerful way to think
about temporal network, simply because all the powerful
machinery (including excellent visualization tools) from
(static) network theory [1,2] could be brought into action.
In other words, for any discrete time step, one can under-
stand and characterize the network using network theory
and then couple the results for the sequence of times in
some way. For this to make sense, the temporal resolu-
tion has to be low. Examples (mentioned above) when this
could be fruitful include: ecological networks, interlinked
habitats, brain networks and global trade networks.

However, there are systems where graph sequences are
not a good idea. Simply speaking, these are cases where
the time resolution is high (or continuous) compared to
whatever dynamic system on the network one would like
to study, or when the time resolution is high and the con-
tacts are instantaneous. E-mail metadata usually have a
one-second time resolution, so a graph-sequence represen-
tation of an e-mail network (even a rather large one) would
look like: empty graph, empty graph, empty graph, empty
graph, graph with one link, empty graph, empty graph,
etc. (Fig. 2e). If we study a disease spreading on a hu-
man proximity network, then, even if the graphs of the
sequence are non-trivial, it would probably be unreason-
able to assume an infection could spread through more
than one contact over a time step. In other words, the
most fundamental assumption of static networks – that
being indirectly connected (connected through a path of
length larger than one) is different from not being con-
nected – breaks down, so techniques from static network
theory cannot be applied directly to a graph of the se-
quence (or a layer of a multilayer network) – Figure 2e.
There are several ways proposed in the literature to get
around this issue, but thinking of the graphs of a graph
sequence as static networks could be misleading.

3.1.3 Dynamic networks

One pillar of network science is the modeling of emergent
properties of graphs. A canonical example is the Barabási-
Albert model [126], which shows how a microscopic mech-
anism in the network growth (preferential attachment)
can lead to a macroscopic property of the network struc-
ture (a power-law degree distribution). Other models (e.g.
Refs. [127,128]) allow nodes and links to disappear too. We
will call the idea of a system as a static network evolving
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Fig. 2. The figure illustrates five representations of the same temporal network (of the contact sequence type). Panel (a) shows
a node-centric time line, where a horizontal line represents a contact between two connected individual at the time given by
the x-axis. Panel (b) shows a time line of the contacts focusing on links (pairs of individuals). Panel (c) shows a time-stamp
decorated, aggregated graph. The numbers of the links denotes the contacts between the nodes. Panel (d) shows a time-node
graph (where one assumes spreading cannot occur across more than one contact per time step). Three of the 32 time nodes are
labeled. Panel (e) shows a graph sequence representation.

in time a dynamic network (we are well aware of the con-
fusion of terminology – sometimes what we call temporal
networks are called dynamic networks). Isn’t this situa-
tion just the same as any temporal network? To some
extent, the answer is like in the previous section – if the
dynamic systems on the network are faster than the con-
tact dynamics, and the network at any given moment of
time is non-trivial, then yes. However, there is also a sub-
tle difference of the research questions about them. For
dynamic networks, the focus is typically on one class of
networks (say protein interaction networks) and questions
concern the structure of this network class, how the struc-
ture has evolved and how it affects dynamic systems on
the network. Temporal networks are typically more data
oriented – researchers investigate a data set, its structures,
and how e.g. epidemic outbreaks would behave on it. Then
one asks how these observations generalize by comparing
results for different data sets. Perhaps, this slightly differ-
ent approach comes from that there are no semi-universal
structures in temporal networks that involve both the time
and topology (as opposed to scale-free degree distributions
in network theory [2,126] or bursty behavior of human
activity [70]).

3.1.4 Time-node graphs

Another way of representing temporal networks, akin to
multilayer networks, is to make a network of time nodes
(sometimes called the “static expansion” of a temporal
network [101]) – representing the original node at a time.
This type of network can be practical since it is straight-
forward to apply static network methods also over the
time dimension [31,129,130]. Eventually one usually needs
to map the time nodes back to the original nodes; maybe
one exception could be a certain year’s edition of an an-

nual event (cf. “NetSci 2015” – a conference during which
parts of this paper was written). (A time-node represen-
tation of our example network is shown in Fig. 2d.)

3.1.5 Time series of contacts on a static graph

Contact sequences correspond, to some extent, to link lists
in static network (a 2×M matrix of the two nodes of every
link in the network; where M is the number of links). The
other important scalable data structure for static graphs –
adjacency lists (listing node-by-node all the neighbors of a
node) – corresponds to assigning a time series of contacts
to the links of a static graph. The advantage of thinking
about temporal networks in this way is primarily visual
– one can plot the underlying graph with all the power-
ful graph layout algorithms designed for static networks,
one can even plot the time series of contacts as a time
line. In practice, this only works for very small temporal
networks, both because the underlying graph tend to be
rather dense in empirical data, and because there is little
space to visualize the contact time series (see Fig. 2c for
an example).

3.1.6 Time-lines of contacts

Another, primarily visual, type of representation is a time
line of contacts. Graphically, one would let one dimension
represent time and one dimension the set of nodes. Then
one connects two nodes by a line at the times of their con-
tacts (Fig. 2a). The advantage with this representation is
that the time-respecting paths (sequences of contacts of
increasing times) between nodes are very easy to iden-
tify – these are all paths that does not turn backwards in
the time dimension. The disadvantage is, not surprisingly,
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that such a plot gets unintelligible if the temporal network
has more than, say, 50 nodes. The visual information that
survives longest is the temporal one, so with 50 nodes, one
may be able to spot structure in the overall activity in the
data, but not the structure of time-respecting paths.

One can also use time-lines of contacts between pairs
of nodes, Figure 2b. This highlights the pairwise interac-
tions, but the visual information relating to the topology,
including the time-respecting paths is gone.

3.1.7 Adjacency tensors

Just like a static network can be represented as a binary
matrix, an adjacency matrix, a temporal network can be
represented as a binary tensor [131–136]. The pros and
cons are also the same – an adjacency tensor, as a data
structure, takes a lot of memory, but it allows for ten-
sor algebra and all the neat and compact formulas that
come with it. The memory problem can, in practice, be
even bigger than for static networks since many empiri-
cal data sets (as mentioned) are very sparse in the time
dimensions. It also shares some problems with the graph
sequences and dynamic graph pictures. Since the dynamic
system of interest may not be able to operate within the
graph of a time step, the adjacency tensor cannot func-
tion like an (unnormalized) Markov transition matrix. Yet
a complication is that time is directed, while many meth-
ods in tensor algebra assume indices could be relabeled
(i.e. time order broken). Finally, we note a visualization
method related to adjacency tensors – see Bach et al. [137].

3.1.8 Film clips

A natural way of thinking of temporal networks, especially
visually, is to show them time step by time step, i.e. as a
film clip [120,138,139]. The obvious disadvantage is that
one cannot see all the information at once. In developing
methods, we feel it is a major problem not to be able to,
for example, highlight a time-respecting path. To get a
feeling for the overall activity and complexity of the data,
however, it could be a useful approach.

3.2 Lossy representations

Now we turn to representations where some information of
the original temporal network (typically contact sequence)
is lost. We still talk about these as representations, not
models, as the number of bits needed to encode them scale
linearly with the system size.

3.2.1 Weighted graphs

A natural way of simplifying a contact sequence is to con-
struct an link-weighted graph where the weight gives a
count of the number of contacts between two nodes. How
useful such a representation is depends on what dynamic

system one considers. Regarding random walks, Lambiotte
et al. write: “Contrary to standard procedures, the im-
portance of a link is in general not proportional to its
number of activations [. . . ], but to the probability that it
participates in the diffusive process.” [140]. Of course it
might require simulations to calculate the probability of
participation, and one might have to settle for counting
the number of contacts for that reason. The quality of a
weight could be improved further if one knows when a dy-
namic phenomenon (e.g. a disease outbreak) starts. As an
intermediate step to creating simple graphs, Holme [141]
uses weighted graph obtained by, for ever contact between
a node pair, summing an exponential weight

∑

i

e−ti/τ (1)

(where ti is the time between the beginning of the spread-
ing and the ith contact, and τ is a parameter that should
match the time scale of the dynamic process).

3.2.2 Reachability and influence graphs

A reachability graph is a directed, unweighted graph that
links i to j if there is a time-respecting path from i to
j [11,122,142–145]. Since the existence of time-respecting
paths depends on time, such a graph needs to be a func-
tion of time. For many data sets that at any given time
are very sparse (like email or phone-call networks) reach-
ability graphs could be a good tool for visualization. The
problem with reachability graphs is rather that they could
be too dense – for our collection of temporal-network data
sets (the ones used in Refs. [146,147]), early in the sam-
pling period, the reachability graphs have 30–100% of the
maximum number N(N−1) of directed links. In our exam-
ple case, Figure 3a, the reachability network is very large
at the beginning, see Figure 3b, with ten links present
out of twelve possible. To remedy this some studies put
a higher requirement on a directed link than just one
time-respecting path, and defines directed “influence net-
works” [148,149].

3.2.3 Time-window graphs

A simple way of reducing a temporal network to a static
network is to include all the links present in a time win-
dow. (The very simplest way would be to take this time
window as the entire sampling time.) Several papers ad-
dress the question of choosing the time window so that
the resulting graph is as useful and informative as possi-
ble. Krings et al. [57] make a comprehensive study of this
question with respect to mobile call networks. Psorakis
et al. [54] discuss this question applied to animal prox-
imity networks. They show the static networks are dom-
inated by clusters at short time scales and are more like
models of heterogeneous graphs (cf. Ref. [126]) for longer
time scales. For short time scales they find the starting
time also can make a big difference because of periodic
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Fig. 3. Panel (a) shows an example contact sequence (the
same as in Fig. 2). Panel (b) is the derived reachability graph
at t = 0. Panel (c) shows the time-windowed static graph from
contacts between t = 3 and t = 5. Panel (d) illustrates a link-
turnover graph where there is a link between two nodes if they
had a contact before and will have one again.

patterns. In a study of proximity data, Sekara et al. [29]
take this idea a step further and use the clusters that fall
out from shortening the time windows to define a “gath-
ering”. They argue that gatherings are natural building
block to characterize this type of data and the face-to-
face interactions they measure. Walker et al. [40] discuss
a similar characterization to understand disease spreading
in hospitals. The time window size also affects modeling
of dynamical systems on the network. Liljeros et al. [39]
discuss how to chose the parameter values to simulate dis-
ease spreading on a time-windowed proximity data, in par-
ticular how the parameter values of the disease spreading
model are related to the time window size. Reference [141]
shows that the beginning of the time window should be
as close as possible to the beginning of the outbreak for
the reduced, static network to be as useful as possible for
epidemic modelling. Génois et al. [47] investigate the op-
timal time window of proximity data ahead of targeted
disease-intervention effort.

3.2.4 Concurrency graphs

A classic theory from the network epidemiological liter-
ature [150] explains that sexually transmitted diseases

spread much faster and further if there are many con-
current partnerships in the population. Usually, “concur-
rency” – as a network property – is thought to be a prop-
erty of an entire graph [151]. It is, however, implicitly clear
from references [151,152], that one can define the concur-
rency of a person as the number of ongoing partnerships
at some specific time t, i.e. the degree in a graph where a
link means that a contact has happened before t, and will
happen again. A bit more generally, reference [141] de-
fines links in concurrency graphs as pairs of nodes having
contacts both before tstart and after tstop.

3.2.5 Difference graphs

Neiger et al. [153] use a static graph highlighting change
(rather than persistent patterns, like the above concur-
rency graphs). They define a difference graph between two
consecutive time steps by the links that changed between
the time steps.

3.2.6 Memory networks

Memory networks is a representation of a slightly more
informative data sets than contact sequences. It assumes
there is a recorded walk process on a set of nodes, like
flight passengers on multi-hop itineraries. This could nat-
urally be simplified to a temporal network of moves where
one move is independent of the others, which could be
further simplified to a weighted network (effectively a
Markov process transition matrix). Rosvall and cowork-
ers [81,154] argue that one can encode much information
without much more complexity by representing this data
as a second order Markov process, i.e. one records the fre-
quency of walkers arriving to node i from h that continues
to j.

3.2.7 Static graph with a model for the contact dynamics

Above, we have considered simplified representations of
temporal networks that project out the temporal dimen-
sion (or change the meaning of the time dependence, so
that paths of links could represent nodes being indirectly
connected). One can also simplify a temporal network in
ways that retain some of the temporal structures. One
such way is to separate the topology and the contact dy-
namics (sometimes [155] called link activation) over links.
The general idea of thinking of a temporal network as
a static network with some process generating contacts
over the links is called the ongoing link picture in refer-
ence [147]. The very simplest way would be to assume an
underlying static network where the contacts between the
links are modeled by the same interevent time distribution
for all the links. Goh and coworkers [156,157] use such a
set-up to argue that fat-tailed interevent times slow down
spreading phenomena.

Inferring this type of picture from data is problematic,
even when it correctly describes the data. One thing miss-
ing is the beginning and end of links. For a short sampling
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time window, this will, in principle, be a smaller prob-
lem (since the turnover of relationships is a slower pro-
cess than the contact, or link-activation, dynamics). So
in that sense, smaller sampling times are better for this
picture. However, for a short sampling time, the chance a
link will not have a single contact, and thus being unob-
served, is larger. There are ways to infer the beginning and
end times, and how good the assumption that there is no
turnover of links is [141,158,159]. One could also use link
prediction [160] to infer missing links, such methods are
(to our knowledge) not capable of estimating how many
missing links there are.

3.2.8 Birth and death (but not rebirth) of links

Another way of simplifying a temporal network, that keeps
both some topological and temporal information is to con-
sider a link continuously active between its first and last
contact. If the simplified picture of the previous section
is more accurate for short sampling interval, this picture
(called link-turnover picture in Ref. [147]) is better for
long sampling durations – after all, regardless the sys-
tem in question, all links need to at least have a begin-
ning. This is similar to dynamic networks (Sect. 3.1.3),
only that it does not allow links to reappear. If the nodes,
perhaps by virtue of their links, also enter and leave the
system, then spreading processes have a predominant di-
rection highlighted by this picture – from the older to
the newer nodes. Holme and Liljeros [147] argue that for
disease spreading on many of the available data sets, the
link turnover picture is more accurate than the idea of a
static graph with an overlying contact dynamics. Note the
connection between the link-turnover picture and concur-
rency graphs discussed above – the active links at time t
in the link-turnover picture defines the concurrency graph
at t.

4 Temporal network structure

At the heart of network science lies the idea that there is
information in the structure of a network that can tell us
something about both the network evolution and systems
that operate on the network. Indeed, a definition of “struc-
ture” in this respect, could be “what carries information
in a temporal network”. In this section, we will discuss
how to measure the structure of temporal networks.

4.1 Network topology

This colloquium concerns temporal networks, and by
“topology” one usually refers to static structures. There
are plenty of literature about this (see e.g. Refs. [1,2] and
references therein). Here we will discuss the role of net-
work topology measures in temporal networks.

In the history of static network theory, measuring
network structure has been driving the field. For exam-
ple, after Barabási and coworkers discovered how com-
mon scale-free (i.e. power-law-like) degree distributions

are [2,126], there was a huge effort both to measure degree-
distribution and to model their emergence. For temporal
networks, similar ubiquitous structures are yet to be dis-
covered, perhaps they do not even exist. This has led the
research in temporal networks down a slightly different
path, where the focus is more on dynamic systems on the
network and how they are affected by structure, and less
on discovering common patterns or classifying networks.

Nevertheless, many temporal network studies are more
or less motivated by static network theory. Many authors
try to generalize a network-topology measure (we will see
plenty of examples of this in the sections on distance met-
rics, centrality measures and community structure meth-
ods below). Another way static network theory enters
temporal-network papers is through temporal mechanisms
that gives static network of accumulated contacts their
structure. Mantzaris and Higham [161] investigate triadic
closure – a mechanism behind e.g. the high clustering co-
efficients of social networks [1] (i.e. a high density of trian-
gles). Kunegis et al. [162] study aspects of the preferential
attachment mechanism that can give static networks an
emergent power-law degree distribution. Some studies also
try to separate topological and temporal effects on spread-
ing phenomena [163] or diffusion [164] (more about that
below).

4.2 Temporal structure

4.2.1 Burstiness and interevent time statistics

Now we turn to structures that only concerns temporal
aspects. Just like topological measures, these cover only
one aspect of temporal network structures. A very com-
mon temporal structure in the literature is the interevent
time distribution. In a time series of events this is the fre-
quency distribution of the time between the events. If the
events are independent and drawn from a uniform distri-
bution, then the interevent time distribution will be ex-
ponential. In empirical data sets, however, it is usually
fat-tailed, or even scale-free [70,159,165]. A difference to
scale-free degree distributions is that bursty time series
are usually characterized by their coefficient of variation
(called “burstiness” [166,167]) rather than their power-law
exponent.

In a temporal network, one could think of a few differ-
ent types of interevent times, corresponding to a few differ-
ent types of time series. The most basic is the time series of
contacts between two nodes. The problem with burstiness
of individual links is that there are usually too few data
points to measure it accurately (or to measure it at all).
In many types of data sets, the number of contacts per
links also has a fat-tailed distribution [159]. This means
that it will be problematic to average the link burstiness,
since most links have only a few contacts and thus a poor
estimate of burstiness. Some authors [72] concatenate the
interevent times and measure the burstiness of that time
series, but this does not get around the problem that in-
dividual nodes and links follow individual patterns.
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Next, one can measure the burstiness of individual
nodes. This makes most sense when the temporal network
records a distinct sender and receiver of a contact. The
bursty structure of when people send e-mails [66] was an
important discovery for this line of research. The distribu-
tion of when people receive e-mails is perhaps less inter-
esting (and less bursty for that matter), but not without
structure (like daily patterns) [159,168–170]. The connec-
tion between the burstiness of links and nodes were inves-
tigated in references [171,172].

4.2.2 Time aspects of network evolution

In addition to interevent times, there are many other
purely temporal structures. For example, the time be-
tween the first and the last contact (between two persons
or of one person) in a data set [61,62,159]. This could be
taken as the life time of a link or node in the data (how to
compensate for the sampling bias from a finite sampling
time was discussed in Refs. [158,159]).

Finally, at the largest scale, one can measure the
growth or decay of a temporal network. In some data sets,
all the nodes and links are basically present at the begin-
ning of the sampling, and stay to the end (this is the
case for several cell-phone data sets [55], e-mail data [66]
and proximity data [21,31]). In other data sets, the overall
activity, including the number of nodes and links, grows
(this is the case for the online prostitution data studied
in Ref. [44] and the online communities [71,72]). In yet
other data sets, there is a constant turnover of nodes [20].
One metrics capturing the presence of nodes and links
throughout the data is the fraction of them that are seen
both before time fT (from the start of the sampling) and
after (1 − f)T , where T is the sampling duration. Holme
and Masuda [163] use f = 0.05 and study time not only as
the real time but also as the number of a contact, counting
from the start (cf. Refs. [173–175]). Another measure for
a similar purpose – to monitor the growth of the network
– is to measure the fraction of nodes or links present at
half of the sampling time, or half of the total number of
contacts [163].

4.3 Paths and generalized distances

The most basic quantity of static networks that explains
the relationship of two nodes is their distance, i.e. the
smallest number of links of a path connecting them. In
temporal networks there are many ways of generalizing
distance and which one to chose is not always obvious. A
classic idea is to consider nodes i and j at time t, then
the latency [4] is t minus the latest time when there is
a time-respecting path from i to j. One could also look
forward and define the temporal distance [176] τ(i, j, t) as
the earliest time to reach from i to j on a time-respecting
path starting at t. The term “distance” may, at first, feel
awkward as a quantity of the dimension time, but one way
of thinking of the temporal network is as an operator that

sets the speed of processes, i.e. converts space to time, and
vice versa.

Rather than latency and temporal distance, one would
many times want to have a time-independent generalized
distance. The problem is that for any empirical data set,
for late enough t, the temporal distances are infinity (or,
analogously, for early enough t, the latencies are infinity).
Pan and Saramäki [176] explore different options – either
to assume periodic boundary conditions or separate the
issues of whether a node can be reached and how long time
it takes to reach it given that it can be reached. The latter
approach was also proposed by Holme [177], who defines
reachability time as the average shortest time to go from
i to j over the times when there is a time-respecting path
between them.

Another generalization of distances to temporal net-
works is to consider the number of contacts in a temporal
path. References [144,178] use only this definition, while
e.g. references [179–182] use both.

Computing, generalized distances in time from one
node to all others is rather straightforward – just simulate
an SI spreading with 100% transmission probability and
keep track of the time when a node gets infected, that will
also be the shortest value. For hop-counts, one could use
a Ford-Fulkerson type algorithm where one runs through
the contacts in time order and the currently shortest path
is updated for each node involved in a contact. Proofs
and technical details about such algorithms can be found
in references [4,179,180]. See reference [183] for some ad-
vanced algorithmic issues about estimating temporal-path
based metrics in streaming data. Finally, we note that the
terminology is exceptionally confusing regarding the topic
of this section – there are a handful of terms for all the
mentioned concepts, and some terms are used differently
by different authors.

4.4 Centrality measures

Centrality measures are usually comparatively easy to
adapt from static networks. In traditional network the-
ory [1,2] they typically build either on some assumptions of
a (more or less abstract) dynamic system on the network,
or on graph distance. One can simply let the dynamic
system evolve following the contacts rather than the links
or replace distance by latency or temporal distance. The
only major difference is that a centrality measures will
depend on time (just like distance metrics). Alternatively,
one could project out time either by taking an average
or the minimum. Closeness CC(i, t), for example, that for
static networks are defined as:

CC(i) =

⎡

⎣ 1
N − 1

∑

j �=i

d(i, j)

⎤

⎦
−1

(2)

where d(i, j) is the graph distance. This can
straightforwardly be extended to temporal networks
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as [122,144,180,184]

CC(i, t) =

⎡

⎣ 1
N − 1

∑

j �=i

τ(i, j, t)

⎤

⎦
−1

. (3)

A problem with closeness centrality in static networks
which becomes much aggravated for temporal networks
is that there might not be any path between i and some
of the other nodes. A workaround is to average the inverse
distance rather than inverting the average distance [176]

CC(i, t) =
1

N − 1

∑

j �=i

1
τ(i, j, t)

. (4)

The problem with this approach is that this type of mean
is less intuitive as it is a somewhat arbitrary combina-
tion statistic of the size of the components [185] and the
(temporal) distance within them. One could actually also
ignore the distances – the up and downstream compo-
nents of a node are also a sort of centrality measures. Kim
et al. [186] discuss how to estimate static centrality met-
rics of a time-window aggregated network (cf. Sect. 3.2.3)
from a previous time window. Michalski et al. [187] discuss
an interesting way of omitting the time dependence by
weighing older paths lighter. One can define temporal be-
tweenness centrality [1] in a similar way [122,184,187–191].
Takaguchi et al. [129] define “temporal coverage central-
ity” of i as the fraction of node pairs (j, j′) such that
passing i would not increase the time to reach from j to
j′. Williams and Musolesi [192] define path-distance-based
centrality measures for spatiotemporal networks (where
one also knows where the nodes are). Takaguchi et al. [193]
consider a different notion of path-based centrality, or im-
portance – not of nodes but of contacts. Simply speaking,
a contact is defined as important if it speeds up many
time-respecting paths.

Rocha and Masuda [194] use the occupation probabil-
ity of random walks on a temporal network as a central-
ity measure. The “communicability” metrics of Estrada
and coworkers [195–197] is also based on a random walk
through a quantum theory propagator. Some related mea-
sures were also scrutinized by Rogers [198]. Random
walks centralities overlap with centrality measures defined
through spectral properties of the adjacency matrix (or
related matrices). Praprotnik and Batagelj [199] make ex-
tensions of matrix-based centrality measures for static net-
works (like eigenvector and Katz centralities) to temporal
networks. Taylor et al. [200] define such a method that
overcomes some obvious problems like how to project out
the time in a principled and meaningful way. A differ-
ent approach to centrality was taken by Pan and Li [201]
who define “control centrality” roughly speaking a node’s
ability to control the network (in a control theory sense).
Zhang and Li [202] and Ghoshal and Holme [203] de-
fine centrality-like measures capturing how much an in-
dividual participates in the activity of a temporal net-
work. Grindrod and Higham [204] develop a differential
equation based centrality measure which generalizes Katz
centrality [1] of static networks. In another paper [205],

Grindrod and Higham propose a path-based centrality
measure that downweigthts long and old paths. In yet an-
other paper [206] these (and some other) authors validate
centrality measures for a temporal Twitter network by
(among other ways) a panel of experts.

A problem related to centrality is to rank players and
teams in competitive sports. Motegi and Masuda [207] ad-
dress this issue in a situation when one has an incomplete
time-annotated set of matches with a win-or-lose outcome.
More specifically, one would like to rank the teams or play-
ers so that there are as few upsets (lower ranked player
beats a higher ranked player) as possible. At the same
time, newer results should be more important than newer.

4.5 Controllability

Structural controllability is a concept that has been
adapted from static network theory [208] to temporal net-
works. It assumes a system with in- and output termi-
nals connected into a network. The dynamics between the
nodes is assumed to be simple, so that the output from one
node is proportional to (or at least a monotonous function
of) the input. One assumes no time delays in the dynamics
and no more complex effects (like memory, etc.). One can
show that, for static networks, there are very simple topo-
logical characterizations of what nodes that one needs to
control in order to control the entire network. Pósfai and
Hövel [209] and Cimatti et al. [210] present comprehen-
sive generalizations of this theory to temporal networks.
Pósfai and Hövel [8] also show that for some classes of
temporal networks, there can be a phase transition in the
time scale of the dynamics between a state where the net-
work is controllable by a a vanishing faction of nodes, and
a state where a finite fraction needs to be controlled. Pan
and Li [201] make an equally ambitious study of, among
other things, limits of the number of nodes that need to
be controlled. In another paper, Pan and Li [211] discuss
a graphic characterization of the nodes controlling a tem-
poral network.

4.6 Other graph invariants

For static networks there were many early studies char-
acterizing properties of the network structure by a single
number. Functions that map a graph (regardless of the
labeling of the nodes) to one number is called a graph
invariant. The number of nodes or links, are two simple
examples. In static network theory some other graph in-
variants are the clustering coefficient (measuring the frac-
tion of triangles) and the assortativity (measuring the
tendency of nodes of similar degrees to attach to each
other) [1]. For temporal networks, we already mentioned
some trivial graph invariants in Sections 4.2.1 and 4.2.2.
All in all, there are not so many temporal network stud-
ies that proposes new functions to characterize the joint
structure of time and topology. One example is the aver-
age number of nodes reachable from a random node at a
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random time (within the sampling time) called “reachabil-
ity” in reference [177]. Another example is Pfitzner et al.’s
“betweenness preference” study [31]. They investigate the
predictability of time-respecting paths. First they define a
matrix, for every node i and time step t, saying for which
pairs of nodes is i situated on a time-respecting path be-
tween them. Through a series of manipulations, including
some information theory, the authors arrive at a measure
capturing the tendency for paths to be time-respecting.
Next, we mention Scellato et al. [212] who define a mea-
sure of a temporal network’s robustness as the expected
change in the average closeness centrality (Eq. (4)) if a
random node is deleted. Finally, a way of summarizing
the activity of a node in a time window using “factorial
moments” was proposed by Chi and Yang [213]. By this
method (adopted from high-energy physics) one can ob-
tain scaling exponents characterizing the fluctuations of
node or link activity as a function of the duration of the
window.

4.7 Entropy measures

Information theoretical measures have been increasingly
popular the last few years, not only in temporal network
theory. Entropy measures capture the randomness of e.g.
the contacts in a temporal network. If the entropy is low,
there is much regularity in a signal which also means that
it is easy to predict. For example, Takaguchi et al. [24]
use an entropy-based analysis to conclude that knowing
a current face-to-face conversation partner decreases the
uncertainty of who the next conversation partner will be
by about 30%. Zhao et al. [116] use entropy to understand
how to estimate the probabilities of configurations of face-
to-face interaction. Perotti et al. [214] use a entropy based
metrics “sparsity” to characterize events in temporal net-
works. Their intention is to create a metrics orthogonal
to burstiness and other interevent time statistics by first
looking across nodes in a time window, then projecting
out the time dimension. Some studies use entropy rates of
random walks on temporal networks to characterize the
temporal network structure [32,81,175].

4.8 Persistent patterns

Obvious patterns to look for in temporal networks are
links and subgraphs that do not change as much as oth-
ers. Clauset and Eagle [215] measure the auto correlation
function of links in temporal networks. Valdano et al. [48]
introduce a similar metric but for nodes. They define “loy-
alty” as the Jaccard index between the neighborhoods of
a node at one time step and the previous time step, and
show that it is important to understand the role of nodes
in disease dynamics. Zhang et al. [86] also argue that loy-
alty in socio-economic systems leads to heavy tails of the
duration of business contacts. Neiger et al. [153] address
an inverse problem by measuring how connected changing
links are. Briefly, they construct a network of the links
that changed from one time step to another, and measure

the minimum node cover (set smallest set of nodes such
that each link of the graph is incident to at least one node
of the set) of this network.

4.9 Cyclic patterns

In empirical temporal networks, especially those related to
human activity, there will be cyclic patterns. Several au-
thors [159,168–170] discuss aspects of how to handle this
type of patterns. Both how to measure how strong such
tendencies are, and how one can get rid of them (for anal-
ysis of quantities where a changing background activity
level is undesirable). Lahiri and Berger-Wolf [216] pro-
pose an axiomatic formalism to handle such phenomena.
Their method is flexible enough to allow some nodes and
links missing from a period and still regard a subnetwork
cyclic. On the other hand, their method does not handle
small random shifts in the cycle length, so one would need
to first coarse grain the data to be able to observe almost
cyclic pattern.

4.10 Motifs

A motif in a static network is a small subgraph that is
overrepresented in a graph compared to in a null model
(typically random graphs constrained to have the same
number of nodes, links and degree sequences as the orig-
inal graph). One could imagine several ways to extend
this concept to temporal networks. Zhao et al. [217] and
Kovanen et al. [60] focus on contacts that connect a group
of individuals and all happen within a time window of
size Δt. They also study different classes of such mo-
tifs. Using this idea both papers examine mobile phone
data sets. Kovanen et al. discover gender-specific patterns
and homophily (the tendency of similar individuals to be
connected). These ideas are explored in greater detail in
Ref. [218]). Zhao et al. argue that complex motifs, like
ping-pong patterns are very overrepresented. Just like tri-
angles are common in static social networks, temporal
patterns involving the links of a triangle within a short
time period are common and important for spreading phe-
nomena [161,175,219]. Rocha and Blondel [220] also use
counts of triangles to characterize networks. Hulovatyy
et al. [221] extend the frameworks of references [60,217].
First, they define a more restricted class of temporal sub-
networks – Δt-causal subgraphs (those are such that you
can reach between all pairs of participating nodes by time-
respecting paths. Second they define “temporal graphlets”
as the equivalence classes, with respect to the order of
events, of Δt-causal subgraphs, and argue it is useful to
think of them as building blocks of temporal networks.
In Li et al. [56] the authors consider the order in which
static network motifs are assembled – an extension of the
network motif concept that is a bit closer to its original.
Zhang et al. [86] define temporal motifs between to consec-
utive time steps in a bipartite network. Lahiri and Berger-
Wolf discuss how to predict recurring static motifs in ref-
erence [50]. Redmond and Cunningham [85] investigate
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the related algorithmic problem of counting and listing
isomorphic temporal subgraphs.

4.11 Mesoscale structures

Network motifs are a way to look at how groups build up
a temporal network from the small scale. It rests on the
assumption that not everything in the network is equally
interesting. Another, even more popular, approach does
not make this assumption, but rather asks how a network
can be divided into groups so that all nodes belongs to one
group (the relative shape of the groups do not matter).
This approach is to find so called mesoscale structures (a
phrase borrowed from the natural sciences, but not used
completely analogously). The most common mescoscale
structure is community structure [222] and that is what we
will focus on in this section. We note, however, that recent
years have seen an increasing interest in core-periphery
structure [223,224].

In a static network, a community is thought of as a co-
hesive subnetwork – more densely connected within than
to other subnetworks. To operationalize such a definition
is a very open task – it seems almost like for every concrete
decision you have to make in creating a community detec-
tion algorithm there is no obviously best choice. There-
fore there is a huge number of community detection meth-
ods [222]. For temporal networks, the easiest approach is
of course to separate the time and network dimensions.
In other words, at time t one would first run the commu-
nity detection algorithm on the static network to decom-
pose the nodes V into communities c1,t, . . . , cn(t),t so that⋃

i ci,t = V . The next step is to merge communities at t
with overlapping communities at t − 1. There are many
ideas in the literature how to do that. Reference [225]
maps the indices of t to the indices of t − 1 so that the
sum of mismatching indices is minimized. This approach
is very simplistic and some pathologies – if the groups are
{1, . . . , 50}, {51, . . . , 100} at t−1 and {1, . . . , 99}, {100} at
t, then the algorithm would consider {51, . . . , 100} leav-
ing a group and joining another, while it would be more
natural to think of the two groups as merging and a single-
node group forming. Sekara et al. [29] merge communities
(or, rather, “gatherings”, see Sect. 3.2.3) by hierarchical
clustering. In other words, they construct a hierarchical
order (dendrogram) of the communities by first assigning
a pairwise coupling strength

1 − |ct ∩ ct′ |
|ct ∪ ct′ |e

−γ(|t−t′|−1), (5)

where ct and ct′ are two communities at two different
times t and t′. The idea of the exponential factor is to de-
crease the weight between groups the further apart they
are in time. Sekara et al. [29] further discuss how to
break the dendrogram into temporal communities. Tan-
tipathananandh et al. [226] propose a much more elabo-
rate scheme which penalizes a node for being temporar-
ily outside of a group, or changing a group, or starting a
new group, with a cost. Then the temporal group dynam-
ics is inferred from minimizing the total cost. Kauffmann

et al. [227] also design a cost-based time-clustering scheme.
Folino and Pizzuti [228] and the early paper by Mucha
et al. [229] use an approach common in static networks –
to maximize an objective function (a.k.a. modularity func-
tion). Pietilänen and Diot [230] use modularity maximiza-
tion and subsequent aggregation in the time dimension. He
and Chen [231] recalculate the partitioning from a previ-
ous time step and thus saves time compared to calculating
it from scratch every time step.

Rosvall and Bergstrom [232], Bazzi et al. [233] and
Chen et al. [234] present other methods where the clus-
tering in clustering in time comes from the persistence of
clusters of time-sliced networks. Gauvin et al. [131] use a
tensor factorization approach to identify additive tempo-
ral subnetworks. They validate the method by recreating
the class structure of a face-to-face interaction network
of a school [235]. Matias and Miele [236] use a dynamic
stochastic block model to find temporal communities. Cai
et al. [237] propose a measure to characterize the activity
level of communities. Peixoto [238] discusses a stochastic
blockmodel approach that puts boundaries to the groups
in time such that it is reasonable to ignore the precise tim-
ing of contacts within a time window (just like one can ig-
nore the wiring of a community in a static stochastic block
model). Peel and Clauset [239] take a similar approach in
their identification of change points in temporal networks.
Speidel et al. [130] define a community detection scheme
on time-node graphs (cf. Sect. 3.1.4).

Given how different temporal networks are (when it
comes to path statistics and spreading phenomena), we
can envision mesoscale structures that are further from
static networks than the ones mentioned above. For a
start it would be interesting with a community detection
method that does not need aggregation over time windows
(for the sparsest temporal networks, say a email network
at a second resolution); that e.g. operates directly on the
flow of some dynamic system.

4.12 Time scales

Timescales is a concept that temporal-networks re-
searchers frequently use. The basic type of reasoning with
time scales are of course common knowledge. The domi-
nant contaminating isotope after the Chernobyl disaster
was Caesium-137. It decays into non-radioactive isotopes
exponentially, with a time constant of 44 years. Thus (ig-
noring dispersion by wind and rain) radiation problems
should vanish in a time scale of centuries. With temporal
networks, however, this type of reasoning becomes, as we
argue in this section, more complex.

A typical definition of temporal networks, opposed to
evolving static networks, is that the time scales of the
network evolution are of the same order, or shorter, than
dynamic processes (epidemic outbreaks, Internet traffic,
etc.) on the network. If the time scale of the evolution
is longer than the dynamic processes, then one can as-
sume the dynamic process is finished by the time there
is a change to the network. However, for many reasons,
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it is rarely that simple. First, in empirical temporal net-
works, there are many types of processes that all can take
place at their own time scale. Take a proximity network of
a researcher and her colleagues as an example. Passing a
colleague in the corridor could take seconds, a chat could
take minutes; a meeting hours; a conference days; a re-
search project months; the entire acquaintanceship could
take years or decades. All of these processes could leave
an imprint on the temporal proximity network. These as-
pects (with application to mobile phone interaction) are
discussed further in reference [55]. Second, the nodes could
follow very different individual patterns, and that could
have a big effect on any kind of dynamics on the network.
This is known to be an important factor for the spreading
of sexually transmitted infections [240] and information
in social media [241]. Some papers [215] find time scales
for individual links. Third, it could be the case that some
types of interactions are described by a scale-free tem-
poral statistics. This means that there is no well-defined
time scale. The most well-studied case of this category is
power-law distributed interevent times [70,156]. If the ex-
ponent γ of the power-law is large enough, the distribution
would have a well-defined average, but if γ < 1, it does
not, meaning if we monitor the average of the distribu-
tion in an ongoing measurement, there would always be
an observation long enough to change the average. Even
if one can characterize narrower power-law distributions
(and other fat-tailed distributions) with mean, median,
variance, etc., they do not define a scale in the sense of the
time constant of an exponential decay. Four, the accuracy
of the time-scale measurements can vary much, and one
may be tempted to include the more accurate ones (e.g.
diurnal patterns) in the modeling even though the less ac-
curately measured ones are more important for dynamic
systems. Five, some relationships (e.g. interevent time or
link lifetime distributions) cannot be easily parametrized
by quantities of the dimension time, thus defining time
scales. This is akin to a model selection problem, where
the number of time scales one can identify comes from
a trade-off between the goodness of fit and the simplic-
ity of the model. The sixth reason that time scales are
troublesome in empirical data is that they can be hard to
separate from effects of the dynamic system itself. This is
a more elusive problem and perhaps rarely very severe. If
one studies e.g. rumor propagation in social media, and
imagine this spreading happens on a temporal network of
follower-type contacts, then it could be that who follows
whom depends on the information spreading, so that even-
tually time scales of the spreading dynamics could mingle
in with time scales of the activity of the social media.

Caveats aside, it is clear that time scales are so useful
that it makes no sense to simply ignore them. There are
also several attempts to define and analyze time scales.
One common approach comes from temporal community
detection. As discussed (Sect. 4.11), it is natural to think
of temporal network communities as subgraphs that are
densely connected within and sparsely connected to other
communities during a time window. The choice of the in-
terval should be such that the community is relatively

stable throughout the interval. If the same process gov-
erns the formation and dispersion of communities in the
entire system, one could find a common time scale for the
process by temporal community detection. Several authors
have implemented this idea [226,242].

Another approach to defining time scales is to look at
the behavior of a dynamic system on the network. Differ-
ent aspects of the temporal network structure could affect
different dynamic systems, so this method cannot map
out all kinds of time scales in a data set. For this pur-
pose, researchers have used both random walks [243] and
spreading processes [178].

Caceres and Berger-Wolf [244] define timescales from
the optimal time windows. “Optimal” here could be evalu-
ated in several different ways. It could, for example refer to
how compressible (in an information theoretic sense) the
temporal network within the time window is (which should
reflect how regular, e.g. persistent, the activity is within,
cf. [232]). Within this framework, Fish and Caceres [245]
define time scales from the optimal time window for link
prediction.

Yet a different approach to time scales comes from ref-
erence [246] who think of processes taking place on the
nodes, so that a “dilution of the temporal network oc-
curs, when the intrinsic node time scale (node waiting
time) is much larger, than the edge dynamic (temporal
resolution)”.

5 Manipulating, predicting and generating
temporal networks

In this section, we investigate a number of way to analyze
temporal networks, either by manipulating an empirical
data set or simulating a dynamic system on the temporal
network.

5.1 Randomization and similar reference models

The idea of randomization techniques is to understand the
effect of a structure by destroying it through randomiza-
tion. If one measures e.g. the speed of a spreading pro-
cess in an empirical temporal network and an ensemble of
temporal networks where this particular structure is ran-
domized, then one can see how much faster or slower the
spreading becomes because of this structure.

Randomization techniques are much more powerful for
temporal networks than for static networks. First, they are
much more versatile. For static networks, they are basi-
cally restricted to shuffling links (keeping the degrees of
the nodes fixed), arriving to something similar to the con-
figuration model with the same degree sequence as the
empirical network [1]. For temporal networks, we will see
a multitude of randomization schemes (and still not men-
tion all conceivable – see Refs. [11,177,241] for more). The
main reason, however, that they are more powerful for
temporal networks is that one can study effects of cor-
relations in the real data set without having to make an
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Fig. 4. Illustrating the shuffled-time-stamps scheme to ran-
domize temporal networks. Panel (a) shows the original net-
work from Figure 2. Panel (b) shows how the randomization
scheme operates on a contact-list representation of the data.
In panel (c) we see the result as a nodal time-line plot. In
panel (d), we see the effect of this type of randomization for
susceptible-infectious (SI) spreading with 100% infection rate.
The plot shows the average number of infectious nodes I as
a function of time since the beginning of the data set t. The
data comes from reference [45] and one can conclude that the
order of event (that is destroyed by the randomization) speeds
up the spreading. In panel (e), we see a corresponding plot for
mobile phone data from reference [59] where the conclusion is
the opposite – spreading is slowed down, in the data, by the
structure of the order of the contacts.

exhaustive list of the correlations. In static networks, it
is usually more fruitful to build in the correlations into
the model from scratch (in e.g. some extended configu-
ration model [1]). If one take that approach in temporal
networks, there are simply so many types of structures
that it is hard to say if an observed result comes from
the generated correlation, or from some other structure
that was not generated. Another advantage is that, with
randomization analyses one can be arbitrarily close to the
real data, and investigate the structure small steps away.

5.1.1 Shuffled time stamps

To understand the effects of the order of events, one can
randomly permute the times of contacts while keeping the

network structure and the numbers of contacts between
all node-pairs fixed [45,58,59,63,176,177,182,247–249]. Al-
gorithmically, this is very simple. Starting from a three-
column list of contacts, one only needs to
1. Iterate through the contacts. Let i be the current

contact.
2. Take a random row j.
3. Swap the time stamps of rows i and j.
If identical contacts are forbidden, one would need to
check that before swapping the time stamps (and iterate
from step 2 until one finds j to swap with without intro-
ducing such a consistence). Usually, such cases are so rare
that one could ignore them and run the dynamic simu-
lation one is interested in on a temporal network with
duplicated contacts. This randomization scheme retains
the overall number of contacts in the network during any
period of time (i.e. preserving the overall daily and weekly
cycles of activity in social data). It does destroy temporal
effects like burstiness (at least some of it) and causal, trig-
gering effects like person A calls person B because person
C called A.

5.1.2 Random times

If one wants to understand the effects of cyclic patterns
(daily patterns in human and biological data, weekly pat-
terns in human data, etc.) [168,216] one can compare the
results from the shuffled-time-stamps randomization with
a “random times” scheme. Here one replaces the time
stamps with a random time, typically from a uniform
distribution of the same duration as the original data.
The additional effect from this randomization compared
with shuffled time stamps explains the contribution from
periodic patterns [59,176,177,248]. There is, however, a
caveat for data sets where the number of present nodes
is changing. For example the prostitution data of refer-
ence [44], analyzed in e.g. references [45,48,146,147,250].
In this data, the number of users active at a time t (in
the sense that they have been involved in a contact be-
fore t and will be again after t) is growing until late
in the sampling time. Assume that all agents have the
same contact rates. Then, if one straightforwardly applies
the above-described randomization, the contact rates of
the nodes present only a short time will much lower than
those spread out over most of the sampling time. If this ef-
fect is not desired, one could perhaps assign random times
only to intermediate contacts over an link (contacts be-
tween the first and last). Since this would not remove the
periodic patterns from the first and last contacts, there
could still be biases if there are many links with just a few
contacts (which is often the case). One could perhaps rem-
edy this by adding a random number to the time of the
first and last contact. However, there is probably no obvi-
ously best (or most principled) way to draw this random
number. Which serves well to illustrate the difficulties of
randomization techniques – just like centrality measures
and community structure [1,2] there are many good ways
of doing it, but none that is obviously, under all circum-
stances, the correct one.
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5.1.3 Random link shuffling

The above two randomization schemes destroy tempo-
ral structures. One could of course neutralize topological
structures as well. To do this, one can use a link shuffling
method defined as follows

1. Pick an link (i, j) (sequentially) from the list of links.
2. Pick another link (i′, j′) randomly.
3. With equal probability replace (i, j) and (i′, j′) by

(i, j′) and (i′, j), or by (i, i′) and (j, j′).
4. If the move in the previous step created a self-link or

multiple link, then undo it and start over from step 2.
5. Go to step 1.

There is no statistical grounded criteria, known to the au-
thor, saying how many times to iterate the above rewiring
procedure. Milo et al. [251] recommend 100 rewirings per
link. Finally, one would randomly redistribute the con-
tact sequences of individual links in the original temporal
network, to the randomized one.

This randomization procedure destroys all network
topological structures except the degree sequence of the
original graph (of accumulated contacts). It preserves the
overall activity level (or rather, and stronger, the set of
times of contacts), and all statistics related to interevent
times, like burstiness. The correlations between the overall
activity of a node and the links it participates in are, on
the other hand destroyed. This list of quantities preserved
or destroyed could be made longer – triggered event se-
quences of e.g. person A calling person B calling person
C would also be destroyed, unless they concern only two
nodes (cf. “ping-pong patterns” [55,66,217]). This high-
lights another slight drawback of randomization schemes
– it can be hard to untangle all their effects. However, it
becomes less of a problem when one use increasingly wide
randomizations to remove structure step-by-step.

5.1.4 Time reversal

Mostly to show the versatility of null-models, we mention
Bajardi et al. [252] and Donker et al. [253] who investigate
spreading on a network where time runs backwards. The
idea is that it could estimate the number and importance
of “casual sequences” where one contact triggers another
that triggers another, and so on, into an outbreak cascade.
As common with inference of causality, this method would
rest on more assumptions than one would ideally want,
nevertheless it shows a qualitatively different null model
from the above.

5.1.5 Poor man’s reference models

A difference with the time reversal null model, compared
to the previously mentioned ones, is that it does not de-
fine an ensemble of temporal networks, but only one new
temporal network. Sometimes computational constraints
could make averaging over an ensemble impossible. Ref-
erence [147] seeks to neutralize the effects of the distri-
bution of interevent times over links (keeping the first

and last contact intact, as mentioned above), but cannot
sample an ensemble of randomized network. Instead they
spread all the contacts between the first and last equally
in time. This creates one network which arguable lacks
the structure (broadly distributed interevent times), even
though it lacks the same methodological basis (as it vi-
olates the maximum entropy principle) as a randomized
network model. Reference [147], furthermore, explores the
effects of the distribution of the time to the first contact,
and from the last contact to the end of the sampling, in
a similar manner – by moving all contacts to the begin-
ning and end, respectively. Similar to the interevent times,
this transforms a temporal network to another temporal
network (not an ensemble) that lacks a structure, but in-
stead of being distributed maximally randomly, it is just
fixed to zero. As a stand-alone argument it would just be
a stopgap measure, but reference [147] combines it with
other ways of testing the effects of interevent times, times
from the beginning to the first contact, and from the last
contact to the end.

5.1.6 Randomization – conclusions and practical advice

As mentioned, we think randomization techniques are
powerful in temporal network studies, primarily as a
method to analyze data sets (with the benefit over gen-
erative null models that one starts the exploration at the
data set itself). One could also use randomization for more
abstract questions. Indeed, mentioned references like ref-
erences [59,147,177,248,252] all use randomization as in-
termediate steps towards a larger theory of how temporal
network structure affects dynamic systems on the network.

The best methodology for randomization is be to build
a sequence of gradually more random ensembles. This
could be done in several ways – see references [59,177,248]
for three different examples. Which way to choose is both
question and system dependent, but it is important to
make the randomization easy to interpret in terms of the
structure it is supposed to destroy. This is, as mentioned,
hard, and reading the literature one cannot help but think-
ing it would be helpful if someone worked out a systematic,
principled way of doing this.

5.2 Boundary conditions and extrapolations

The range of possible structures and correlations in tem-
poral networks is much larger than in static networks.
That is a good argument for taking an empirical data set
as your staring point and using randomization (Sect. 5.1)
techniques, rather than tuning the structure of a gen-
erative model. The challenge with this approach is how
to generalize the results to larger networks and longer
times. Of course any kind of answer to this question in-
volves some form of modeling of the data. One approach
to compensate for a short sampling time T is to use pe-
riodic boundary conditions [133,176,194,248,254], i.e. by
the time you reach the end of the sampling time t = T ,
you just start reading from the beginning t = 0 but add
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mT to the time for sweep m of your temporal network.
This method assumes that the ongoing link picture holds
for the data (cf. Sect. 3.2.7). The obvious problem with
periodic boundary conditions is that they ignore tempo-
ral effects longer than the sampling time window. Worse
yet, they can introduce new structures. If, for example,
a node has a life time in the data of duration Δt � T ,
then periodic boundary conditions would introduce spuri-
ous interevent times of durations of about T . If the data,
however, fits well to the ongoing link picture, then periodic
boundary conditions are a good idea. There are periodic
temporal networks too, where periodic boundaries are ex-
act [255,256] – public transport systems, communication
with satellites in low-Earth orbit, and security guard tours
are three examples (from Ref. [256]).

How to extend results for empirical data to larger pop-
ulations is an interesting future challenge. Rocha et al. [45]
add their temporal network data of sexual contacts in
prostitution to a background, non-prostitution sexual net-
work estimated from surveys. This approach, however,
cannot be better than the coarsely modeled background
data. Another approach that we have not seen evaluated,
or used, yet is to sample random subsets of the nodes and
by tuning their sizes and run the dynamic system on these.
Then plot the quantities of interest as function of the size
of the subsampled data (so the largest data point would
be the entire data set itself). By this method, one could
extrapolate results to larger sizes than the original net-
work. However, this finite-size scaling method (straightfor-
wardly applied) would introduce increasingly large biases
the smaller the subnetwork is (simply because sampling
half as many people is not the same as having a half as
big population). Further research in this type of meth-
ods would be very interesting. Could one, for example,
use empirical data as building blocks for arbitrary large,
semi-empirical data sets without introducing fatal biases?

5.3 Temporal link prediction

Given a static network, assuming there are some missing
links in it, link prediction is the problem to rank pairs of
nodes [160] in order of their likelihood of being a missing
links. In temporal networks, this is usually rephrased as
to predict all links in the next time step, or further into
the future. See reference [257] for a survey of this fairly
large theme of mostly computer science. As an example of
a method, Dunlavy et al. [135] (and several others) base
their prediction methods on tensor factorization of the ad-
jacency tensor. It would be interesting to predict missing
contacts in a contact sequence. Given that an adjacency
matrix does not have to represent an evolving network of
accumulated contacts, this is a more principled general-
ization of link prediction to temporal networks (although
it makes less sense for computer science applications).

The slightly different problem of Génois et al. [258]
make a nice segue from this section to the next. Génois
et al. study how to compensate for missing temporal links
in empirical data for studies of spreading processes. Their
method is based on constructing a weight matrix (where

weight represents the fraction of all contacts that hap-
pened between two nodes). This means that they assume
the ongoing link picture (cf. Sect. 3.2.7) which could be a
severe limitation [62,147]. From the weight matrix, Génois
et al. generate synthetic contacts that could be added to
the original data to densify it.

5.4 Generative models

Generative models of temporal networks have a slightly
different role than in static networks. For classic net-
work theory [2] an important goal, especially in the early
aughts, was to construct network models that generated
some emergent structure (most commonly power-law de-
gree distributions [126], but also e.g. community structu-
re [225]). For temporal networks there is no known, ubiq-
uitous (or at least very common) structure that combines
time and topology in a non-trivial way. On the other hand,
there is a multitude of structures that can interact with,
and affect, dynamic systems. The function of the models
in temporal networks is thus more as tools to investigate
the relation between structure and dynamics than to dis-
cover microscopic mechanisms. Although, as we will see,
there are models of the latter kind too.

5.4.1 Static networks with link dynamics

The most straightforward approach to generate a tem-
poral network is to generate a static network from some
model, and for each link generate a sequence of con-
tacts. In the simplest approach, one would not let the
contact generation be influenced by the network position
of the links. For example, Holme [141] uses the following
protocol.

1. Construct a simple graph by first generating a multi-
graph by the configuration model [1], then removing
duplicated links and self-links.

2. For every link, generate an active interval (when
contacts can happen) from some distribution. Refer-
ence [141] uses a truncated power-law for the duration
of the active interval, and a uniformly random starting
time within a sampling time frame.

3. Generate a sequence of contact times following some
(bursty or not) interevent time distribution.

4. Wrap the contact time sequence onto the active in-
tervals of the links. In other words, first rescale the
sequence to the total time of the active intervals, then
cut it in the same durations as the active intervals, and
assign it to them.

Adding correlations between the time and topology to
this approach is fairly straightforward. This model is il-
lustrated in Figure 5.

Rocha and Blondel [259] use a method that is very sim-
ilar to the above framework. The only difference is that the
active interval of a node starts when that of another node
ends. By this procedure, they generate networks where the
number of active nodes is constant.
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Fig. 5. Illustrating a simple generative model for temporal net-
works, used in reference [141] and (almost) in reference [259].
First one generates a static network (technically a multigraph)
from the configuration model by (a) drawing degrees from a
probability distribution and (b) matching them up in random
pairs. Then one generates active intervals for the links (also
randomly, in this case all links being active the same dura-
tion), (c). Finally one generates a time series of interevent
times from a probability distribution (d) and rescales it and
matches it to the active intervals.

5.4.2 Activity-driven networks

Perra et al. [121] propose a model of temporal networks
that is simpler than the above. They use a graph sequence
framework (Sect. 3.1.2), so Gt denotes a simple graph at
(the discrete) time t. The generation proceeds as follows:

1. Increase the time counter to t and let Gt be empty.
2. For every node i, make it active with a probability

aiΔt. Connect i to m other randomly chosen distinct
nodes (active or not). Reference [121] uses a truncated
power-law distribution for ai.

This model has been the ground for most analytical stud-
ies of processes on temporal networks [260–266] and emer-
gent static network structures [267]. Jo et al. [268] study
disease spreading on a similar (but not identical) tempo-
ral network model. Laurent et al. [269] extend the origi-
nal activity-driven model to include memory effects and
triadic closure [161,219]. Yet an extension of the activity-
driven model was proposed by Moinet et al. [77]. Their
model seeks to include aging effects, in particular for sci-
entific collaboration networks (cf. the long-term struc-
tures discussed in Sect. 3.2.8). In a final extension Sunny

et al. [270] incorporate life times of links (including non-
Markovian models that need to be solved numerically).

5.4.3 Face-to-face interactions and communicators

Starnini et al. [271] developed a model of temporal face-to-
face networks. This is naturally a spatiotemporal network.
Technically, their model is a two-dimensional random walk
model where there the chance of walking closer to a node
i is proportional to an increasing attractiveness ai. The
more attracted a walker is to its neighbors, the slower its
walk becomes. Finally, they also model the agents as hav-
ing active and inactive periods that they transfer between
with the same probability every time step. The authors
motivate the last step by observations (that the people
observed in e.g. Ref. [23] do not always socialize, even
though they could). Zhang et al. [272] propose a slightly
more elaborate model, but with an abstract representation
of space, for the same problem.

Mantzaris and Higham [273] propose a model for com-
munication in an online setting motivated by the obser-
vation that some individuals are much more central in a
temporal sense than they are in an aggregated static net-
work. Their method is somewhat similar to the above in
that it assigns an intrinsic trait value to the nodes. Then
it proceeds by assigning random communication partners
to a node by a basal rate and a positive feedback mecha-
nism. A more statistics oriented model of communication
in social networks can be found in Raghavan et al. [274],
while Hsu et al. [275] take a more mechanistic approach
towards a similar goal.

5.4.4 Link-node memory models

Vestergaard et al. [276] propose a model where both nodes
and links are activated by temporal (non-Markovian) ef-
fects. In their model, links can be active or inactive (like
the above mentioned activity-driven model). Apart from
their state, a link is characterized by the time τ(i,j) since
the last time it changed state. Similarly, a node i is also
acts depending on the time τi since it last was involved
in a contact. The network is initialized to N nodes and
all links inactive. An active link is inactivated with a rate
zflink(τ(i,j)) (z is a control parameter). A node can initi-
ate (activate) a link with probability bfnode(τi). This new
link is chosen from the nodes i is currently not in contact
with with a probability Πnode(τj)Πlink(τ(i,j)). Where the
memory effects enters the model through the “memory
kernels” f and Π . Vestergaard et al. give these a power-
law decay form and shows that the with a proper choice of
exponents, their model can recreate the statistics of many
empirical temporal networks.

5.4.5 Self-exciting point processes

Masuda et al. [277] and Cho et al. [278] use a Hawkes
process with the same objective as Starnini et al. [271]
above. Masuda et al. observe that there is a positive cor-
relation between consecutive interevent times in empirical
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data that cannot be modeled by interevent times alone.
Their model works by defining an event rate at time t as

v +
∑

i:ti≤t

φ(t − ti) (6)

where φ is an exponentially decreasing memory kernel
(zero for negative arguments to respect causality) and v is
a basal event rate. Even with an exponentially decreasing
kernel, the interevent time distribution becomes heavy-
tailed. The model also creates positive interevent time dis-
tributions, but not the gatherings that can appear in real
face-to-face networks (Sect. 2.1). Cho et al. extend this
framework by including spatial effects. Zipkin et al. [279]
make a comprehensive study of point-process models of
social-network interaction but without a coupling to the
topology.

Like the above, Colman and Vukadinović
Greetham [280] propose a model of temporal networks
founded on the theory of stochastic point processes. In
their setup, a node forms and break links based on a
Bernoulli process with memory. Similar to the Hawkes
process mentioned above, the probability of an event be-
tween i and j increases with the number of recent events
that happened between i and j. More precisely, Colman
and Vukadinović Greetham take the probability of a link
to activate or deactivate at time t to be proportional to
the number of such events in a time window of a certain
duration ahead of t. For the model we just sketched, the
authors derive an emergent power-law interevent time
distribution.

6 Dynamic systems on temporal networks

The study of any kind of network is usually done with
some dynamic system in mind. The network is just the
infrastructure for the dynamics. As already mentioned, a
central theme in temporal networks is to relate the struc-
tures in both time and topology, to dynamic systems. The
types of dynamic systems of interest can be different com-
pared to static networks [282] – those that are naturally
much faster than the underlying network, like traffic on a
road network, become less interesting; those that are de-
pendent on the timing of the contact could be meaningless
in static networks.

6.1 Walks

A walk is a process where one (or possibly more) units
(walkers) move with the contacts across a temporal net-
work. In other words, the walker is always located at
one and only one node. If it is at i at time t, and
there is a contact (i, j, t) then the walker can go to
node j. If the walker makes the move or not could be
decided in many different ways. Usually the decision
process has a random component, making it a random
walk [140,155,164,194,242,243,283]. The limit of certainty
defines greedy walks [175].

1 2 3 4 5 76
t

1

2

3

4

a

1 2 3 4 5 76
t

1

2

3

4

b

1 2 3 4 5 76
t

1

2

3

4

c
time window

adopter

non adopter

location of walker

susceptible

infectious

recovered

infection event

recovery event

Fig. 6. Illustration of three dynamical systems on temporal
networks. Panel (a) shows a susceptible-infectious-recovered
model with a disease duration of 2.5 time steps. The outbreak
starts at node 3 at time 2 and reaches one other node. There is
a potentially contagious event between nodes 3 and 4 at time 4,
but in this example chance made it not contagious. Panel (b)
shows a greedy walk starting at node 2 at the beginning of the
sampling period. A greedy walk follows every contact away
from the node where the walker is. Panel (c) illustrates one
of the temporal threshold models studied in reference [281]. A
node becomes adopter if it is exposed to (i.e. in contact with
an adopter) more than twice within a backward time window
of 2.5 time units.

Random walks are a very fundamental stochastic pro-
cess with applications in many areas, from physics to econ-
omy, biology and social science [284]. For temporal net-
works, it is the dynamic system that is easiest and most
straightforward to adapt from static networks. One does
not need to make any of the subtle technical decisions
mentioned for epidemic models below. On the other hand
there are perhaps not so many real phenomena modeled
by random walks on temporal networks. Our only moti-
vating example is Ramiro et al. [285] who argue they could
be a lightweight communication protocol, and perhaps the
paths of travelers in air-travel data [81]. The reason walks
do not model many real systems is that things spreading
on temporal networks are usually not conserved, or it is
(like for distributed computing) the thing spreading that
defines the temporal network. For this reason, the clas-
sical quantities of random walk theory (e.g. first passage
time) are also not as central as for random walks on lat-
tices or static graphs – but they do exist [155,182,260,286].
Instead people either use walks as probes of the system’s
burstiness [164,182], time scales [242,243] or other tempo-
ral patterns [175]. Another use of random walks (alluded
to above) is to use them as a basis for a generative model
of temporal networks [155,287–290]. Delvenne et al. [164]
separate temporal and topological effects in random walks
on networks. Where one typically use a fully connected
underlying topology (except Barrat et al. [287] who start
from a weighted static network). Memory network [32,81]
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are also modeling temporal networks as random walks (be-
yond a first order Markov process).

6.2 Epidemic models

The spread of infectious disease is one the most natural
types of dynamic processes on temporal networks [291].
The framework for modeling epidemic outbreaks is well
established since decades. In compartmental models, one
divides the population into states (classes, or compart-
ments) with respect to the disease, and assign transition
rules between these classes. The four most common states
are susceptible (individuals that do not have the disease,
but can get it), infectious (who have the disease and can
spread it), recovered (who cannot get or spread the dis-
ease), and exposed (who are infected but cannot yet in-
fect others). The infection event is always (as far as we
know) between a susceptible and an infectious and is usu-
ally the only transition that involves a human-to-human
interaction. The second, equally important, ingredient in
epidemic modeling is a model of the contact patterns, i.e.
a model or data set describing who meets whom, when
and (sometimes) where. Temporal networks fit well for
this job, and no wonder much of the temporal-network
theory have been developed with infectious diseases in
mind. Hethcote’s reference [292] is our favorite introduc-
tion to the classic theory of epidemiology; Keeling and
Eames [293] is an excellent introduction to static networks
as models of contact structure; and reference [291] gives a
brief review of temporal network epidemiology.

Simulating disease spreading on temporal networks is
easy. Or rather, the straightforward way of doing it is also
quite efficient. The reason is that we assume the entire
contact sequence is an input. There is thus no reason to
model the contacts, like disease simulation algorithms on
static graphs need to do [294]. Still, there are many tech-
nical issues to consider when modeling disease spreading
on temporal networks. First, how one should model the
exposed and infectious stages. In traditional mathemati-
cal epidemiology, one assumes a finite chance of exiting
these states every unit of time. This means that the du-
ration of those states will be exponentially distributed,
which is not in agreement with data [295]. The advan-
tage is that (since one time step is independent from the
next) the analytics gets much simpler. The other option
is to assume these stages have constant durations, which
is also a big simplification. The advantage with this ap-
proach, except that it is more realistic, is that it the pro-
grams become a bit faster and sometimes more compact.
Next, practical consideration is what to do if there are
several contacts involving a node during the same time
step. The solution depends on the data set and how much
you would like to stick to the assumption that the con-
tagion is instantaneous. One principled way is to sample
the contacts during a time step in a random order, an-
other is to not allow a contact to spread the disease the
same time step they got it (effectively inserting an ex-
tra exposed state). The last, and perhaps biggest, techni-
cal issue is the boundary condition. Basically, you would
like to assume that spreading can only happen within

the data, while at the same time, scale up the results
to a much larger population than your data set. Génois
et al. [258] make a pioneering attempt in resolving this
issue by proposing a resampling method to extrapolate
the results to large populations. There are many technical
challenges left to solve, and many redundancies to exploit
to tune the algorithms. Vestergaard and Génois [296] pro-
pose an extension of the Gillespie algorithm (that, rather
than simulating an infection event by random numbers,
calculates the time to the next successful infection). It
is worth noting that, the most canonical compartmen-
tal models – the susceptible-infectious-susceptible (SIS)
and susceptible-infectious-recovered models (SIR) – are
two-parameter models in temporal networks, but for both
static networks and fully connected models, they are ef-
fectively one-parameter models. This changes the analy-
sis more than one could first expect, and it is easy to
miss some effect by analyzing them as if they were one-
parameter models.

Many papers in temporal network epidemiology (espe-
cially in the early days) showed the big differences that
adding the time component to the contact structure can
make [45,143,146,262,297–304]. One line of research in
temporal network epidemiology concerns how structural
aspects affect disease spreading. The progenitors of this
theme was the early HIV researchers who compared se-
rial monogamy to concurrent partnerships [152]. In the
recent wave of temporal network research an early finding
was that burstiness – a broad distribution of time between
contacts – slows down disease spreading [59,156,301]. Ref-
erence [45], however, found that time shuffling (destroy-
ing burstiness) is slows down SI spreading. The reason for
this observation, argues reference [147], is that the num-
ber of active nodes in the data set of reference [45] keeps
growing throughout the sampling time. This is a condi-
tion for the ongoing-link picture to hold, which is assumed
by papers arguing that bursty link dynamics slows down
spreading (see Sect. 3.2.7). Rocha and Blondel [259] con-
tinue this analysis with different spreading, scenarios and
structures on model temporal-networks. Briefly speaking,
they conclude that it is hard to generalize the relation-
ship between structure and spreading statistics over dif-
ferent compartmental models. A quite similar result is pre-
sented by Sun et al. [265] who show that memory effects
in model temporal networks can increase the epidemic
threshold of the SIR model but lower the threshold in
the SIS model. Karsai et al. [261] show that, quite coun-
terintuitively, strong links (paris of nodes with many con-
tacts) can impede a SIR spreading process. Sun et al. [265]
make this result more nuanced by showing that in SIS
spreading the strong links can prolong the outbreak. An-
alytical studies are rarer than computational (no won-
der – adding a level of complexity to network mathemat-
ics makes it really challenging), but Zhang and Li [305]
and Valdano et al. [133] derive the epidemic threshold for
a SIS model using a rate equation and spectral method
respectively. There are also handful studies using Perra
et al.’s [121] activity-driven and similar models to study
epidemics [261–263,265,266,268,270].
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There is a number of papers in temporal network epi-
demiology that tries to connect to the traditional theoret-
ical epidemiology. One example is studies analyzing the
basic reproductive number R0 in temporal networks. R0 is
defined as the expected number of people a first infectious
person would infect in a population of only susceptibles.
This is an estimator of the spreading speed of a specific
disease in a specific population, that many (both medi-
cal and theoretical) epidemiologists are so used to that
they want to see it estimated, even though direct quan-
tities – prevalence (number of infectious individuals) and
incidence (number of infection events) – are not harder
to estimate than R0. That much said, R0 is an impor-
tant bridge between temporal-network epidemiology and
classical theoretical epidemiology (such as discussed in
Ref. [292]). Rocha and Blondel [259] estimate R0 for many
spreading scenarios in model temporal networks. Holme
and Masuda [163] discuss how R0 can fail as an estima-
tor for the final outbreak size. Consider two diseases with
per-contact transmission probabilities λ1 and λ2 and dis-
ease durations δ1 and δ2. In principle, the outbreak size
grows with both λ and δ, so there are naturally parame-
ter values λ1 > λ2 and δ1 < δ2 that gives the same R0,
but these do not have to give the same outbreak size. In
general, there are parameter values where disease 1 has a
larger R0 but disease 2 has a larger estimated outbreak
size. Holme and Masuda [163] discuss the conditions for
this, somewhat paradoxical, situation to happen and find
that sometimes this can be explained by topological prop-
erties, sometimes because of temporal structures. Another
way to connect the bridge between temporal networks and
static networks is to ask how to best reduce a temporal
network to a static network (i.e. so that the static network
encodes as important epidemiological information as pos-
sible). The simplest way is to assume a time-windowing
procedure (see Sect. 3.2.3) and ask how to choose the opti-
mal time-window [39,57,141]. The rough answer (as far as
epidemic spreading goes) is that one should set the begin-
ning of the time window as close as possible to the begin-
ning of the epidemics and the end of it to match the time
scale of the spreading [141]. Reference [146] investigates
how the additional, information of temporal networks af-
fect the predictability of outbreak sizes as a function of
when the outbreak is observed.

Another line of research concerns the identification of
influential spreaders. One version of this is the vaccination
problem – imagine you can immunize (or in other ways
lower the impact with respect to spreading) a fraction f of
a population, then how would you chose them. One needs
to make further assumptions about what kind of informa-
tion that is accessible, and how reliable it is, which make
this a rich question. Lee et al. [306] assume individuals can
name who they have been in contact with (such that the
disease could spread) and when the contacts happened.
They suggest to sample people at random and then vac-
cinate their most recent contact, which both increases the
chance of vaccinating active people in general and those in
a current burst of activity. Starnini et al. [307] extend this
research, assuming global knowledge about the contact

could be obtained and try protocols like vaccinating nodes
with the highest degree, or betweenness, over a time win-
dow before the vaccination. Génois et al. [47] also seek vac-
cinees by a form of estimated betweenness. Specialized to
corporate employees, they propose to first vaccinate peo-
ple who share their time between different departments
of the company. Osawa and Murata [308] identify vacci-
nees by growing a cluster in a greedy algorithm. Habiba
et al. [309] assume full knowledge of the contacts and in-
vestigates vaccination by various temporal-network cen-
trality measures. Salathé et al. [25] also assume global
knowledge and argue that temporal patterns are impor-
tant for preventing the spread of influenza (with proxim-
ity data from an American high school). Toth et al. [26]
present a similar study of influenza spreading in a real
network of elementary and middle school children. Ulti-
mately, the vaccination problem is a prediction problem.
One needs to decide whom to vaccinate to prevent fu-
ture disease spreading based on the knowledge at the time
of the vaccination (which can only be about the past).
Valdano et al. [48] discuss this issue in more general terms
and connects it to the presence of persistent structures
(Sect. 4.8). Mantzaris and Higham [197] argue that com-
municability is a good predictor for how easily an outbreak
can spread on a temporal network. Gauvin et al. [132] use
their tensor factorization method from reference [131] to
identify temporal subnetworks that could contain a dis-
ease within itself longer than expected by chance (thus
acting reservoir for the disease).

Even though most applications of temporal networks
to epidemic models concerns human diseases, there is a
particularly active subfield interested in disease spread-
ing in livestock [46,48,49,310,311]. The reason is twofold.
First, there are good data sets on animal transporta-
tion. Second, a contact is fairly well-defined for such
temporal networks. (Which is also a reason sexual net-
works [45,150–152,259] and hospital-transmitted infec-
tions are frequently studied in the temporal-networks
literature [39,312].)

6.3 Opinion and information spreading

Except disease spreading, the other major class of one-to-
many spreading phenomena in temporal networks of hu-
man contacts is that of rumors, opinions, information, etc.
By now it is a quite a cliché that these spreading phenom-
ena work differently than infectious diseases (“viral videos
don’t spread like viruses”). We have learned from studies
of spreading on social networking services that individual
behavior is very diverse. Not only do people have differ-
ent levels of activity, they could also follow completely
different mechanisms [68,313]. The term “complex conta-
gion” refers to processes where a compartmental model of
disease spreading is not enough, which is often, but not
always, the case for information spreading. There is some
ambiguity here – reference [314] defines complex conta-
gion as when the content of what is spreading affects the
spreading (like that one would have to be exposed more
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to an idea the more controversial or contentious it is to
adopt it).

Maybe the simplest type of complex contagion mod-
els are threshold models. These assume that an individual
adopts an idea when the exposure is over a threshold.
For temporal networks, this adds complexity compared
to disease spreading models because, clearly, older influ-
ence matters less than newer, so one has to decide how
to down-weigh the older contacts. References [281,315]
adapts Watts’s cascade model [316] to temporal networks
by counting only contacts within a moving window. If a
large enough fraction, or number, of the contacts within
this window is to adopters (i.e. individuals carrying what-
ever is spreading on the network), then an agent would
adopt it. Reference [317] uses a slightly different thresh-
old model, where the importance of a contact with an
adopter decays exponentially in time. All these three stud-
ies [281,315,317] conclude that there are situations where
burstiness would have slowed down spreading in epidemic-
type models, when it would be accelerated for threshold
models. The intuition is that the contagion might need
a burst to overcome the threshold. Reference [248] also
uses a moving time window (like Ref. [281]), but calcu-
lates the ratio of adopters among the number of neigh-
bors in the network of aggregated contacts. Thereby they
weigh exposure coming from different neighbors heavier
than repeated information from one neighbor. De Martino
and Spina [313] extend the SI model to include individual
contact rates and can thereby match empirical spreading
data more accurately. Finally, we mention reference [187]
that investigates methods to seed a temporal network
(with applications to word-of-mouth marketing) for op-
timal spreading by a threshold type dynamics.

An even simpler type of opinion spreading model than
threshold models is the voter model. In this model ran-
dom nodes copy the opinion of random neighbors. Al-
though very popular in static networks, we only know two
works [318,319] studying it on temporal networks. In this
study, the temporal network is a result from a mutual se-
lection process. Comparing the voter model to other dy-
namic models on empirical data sets would be interesting.
Nishi and Masuda [320] study another model of opinion
spreading based on social balance theory. This theory con-
cerns networks with both positive and negative links. A
positive link means that two actors like or benefit from
each other. The theory states that triangles with an odd
number of negative links are not stable. This principle
could straightforwardly be changed into a network evolu-
tion model. Nishi and Masuda take another approach and
assume the interaction to be given, but the link signs to
evolve toward a more socially balanced state. They argue
that temporal fluctuations slow down the time to global
social balance.

6.4 Percolation, error tolerance and attack
vulnerability

Compared to random walks, and spreading processes,
there has been relatively little studies of percolation

theory on temporal networks. Otherwise, percolation is
well studied, especially on regular lattices [321] but also
on static networks. Simply speaking, percolation theory
colors the nodes of a network black and white by some
random process, then asks the probability that there is a
connected path of black nodes reaching from one side of
the network to the other. Originating in geophysics, per-
colation theory has also been used in material physics,
and many types of interdisciplinary applications. Starnini
and Pastor-Satorras [264] is the only paper we are aware
of that is fully devoted to percolation on temporal net-
works. Their main point is to map an SIS process to a
percolation problem, which they test on the generative
temporal-network model of reference [121]. Pósfai and
Hövel [209] study percolation as a step towards study-
ing network controllability (see also Ref. [201]). Miritello
et al. [63] map a spreading problem to percolation. Indeed,
the SI model [45,173,178,259,322] is equivalent to invasion
percolation.

One way of interpreting percolation theory in networks
is as a way to estimate the functionality of a networked
system in the presence of failed components. If there is
a connected cluster spanning the network despite a ran-
dom fraction of the nodes broken, then the network, as a
whole, is still considered working. Alternatively, one can
think of an adversary that deliberately wants to break the
networked system. In static networks, heterogeneities are
known to improve the error tolerance but worsen the at-
tack vulnerability [323]. Trajanovski et al. [324] and Sur
et al. [325] arrive at a similar conclusion for temporal net-
works. Trajanovski et al. test a variety of attack scenarios.
Sur et al. specialize in networks with a pronounced tempo-
ral community structure. Note that the attack vulnerabil-
ity problem is (if not equivalent, at least) very similar to
identifying influential spreaders in information spreading
(Sect. 6.3) or nodes to vaccinate to stop disease spreading
(Sect. 6.2).

6.5 Synchronization

There are conspicuously few papers that take a temporal
network as input and asks how fast, or well, a network of
oscillators can synchronize. A paper about synchroniza-
tion like reference [260] is about random walks seems like
a low-hanging fruit. The closest ones we are aware of are
Buscarino et al. [326] who investigate synchronization on
a network that evolves in an uncorrelated random way;
Lee et al. [327] who study a periodically changing un-
derlying network; and Kohar et al. [328] who randomly
rewire the network during the time evolution of an oscil-
lator system. We briefly mention neuroscience where syn-
chronization is an important concept. For brain networks
(as mentioned in Sect. 2.7) synchronization itself defines
the contacts (Ref. [329] and other papers) and is thus not a
dynamic system on the network, but there could be more
practical motivations for synchronization studies in this
direction.
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6.6 Evolutionary games

A very well studied type of dynamics on static networks
is game theoretical models [330]. These address the evolu-
tion of cooperation in a population of egoistic individuals,
the evolution of populations that compete for a common
resources, and many other scenarios where there is a con-
flict between short-term individual interests and longer-
term interests of the entire population. Game theory mod-
els typically assign strategies (usually just labels) to the
agents. Then, based on the interaction network and the
strategies, they calculate a payoff for all the agents (that
they seek to optimize).

To our knowledge, there is only one paper study-
ing game dynamics on temporal networks – Cardillo
et al. [247]. They base the study on human proximity data
that they aggregate over time slices. They run the game
dynamics over a time window, calculate the payoff and
update the strategies (by copying strategies from random
neighbors, but with a higher chance of copying a strat-
egy of a successful neighbor). Cardillo et al. focus most of
their analysis on the effects of the time window size and
the temporal network structure (analyzed by randomiza-
tion null models).

7 Discussion and future outlook

We hope this exposé has given you an overview the state
of temporal networks as of summer 2015. The field has
evolved tremendously in the last five years. When we
wrote reference [11], our feeling about the field was quite
different. We thought the field was waiting for its scale-
free degree distribution – some very common structure,
involving both time and topology, that called for a non-
trivial explanation. This, we thought, would lead to a
flurry of activity in generative models. There have indeed
been many generative models proposed, but not to ex-
plain a newly discovered structure. The focus have been
more on what is spreading or diffusing on the networks,
rather than the temporal networks themselves. This does
not necessarily mean that there is no future for temporal-
networks metrics. We cannot help but thinking researchers
have, so far, been too locked into thinking like static net-
work theory. There could be other types of structures,
very different from established ones in both static net-
work theory and the theory of time series. In particular at
the mesoscopic scale, we can imagine meaningful tempo-
ral network structures that are neither cohesive subgraphs,
nor core-periphery structures, nor bursts, etc. There has
also been a rather large amount of analytical works (even
though the field is, on average, more computational than
static network theory). This is of course a good thing, but
we wish the analytical minded authors would stay data
driven, and model structures that: first, are observed in
empirical data; second, can affect the dynamic system of
interest.

Assuming the current trends will continue, we will see
temporal network research diverging from static network
science and become even more temporal. There is plenty

of room for such developments. For static networks, it
was early established that degree distributions [2] were
the most fundamental statistics. Even for purely temporal
quantities of a temporal network, there is no obvious such
structure. In the wake of reference [70], there has been a
lot of focus on interevent times. But quantities such as
the time nodes or links first enter the data, the time be-
tween the first and last contact, the average time between
their contacts, etc. are not more complicated and, at least
under some conditions, more important for spreading pro-
cesses [147,163].

We also anticipate new applied areas to discover tem-
poral networks as a modeling framework. The last five
years, neuroscience (more specifically, brain science) has
started to embrace temporal network methods (Sect. 2.7).
There have been some temporal network papers in animal
behavioral science (Sect. 2.2) and ecology (Sect. 2.10), but
we anticipate more studies in these fields. Especially since
there are several long-term ecological studies that presum-
ably have good temporal network data (see e.g. http://
www.lternet.edu/).

A straightforward way of finding new research ques-
tions if of course to add yet a level of complexity (just
like temporal network studies once spawned from network
science). The most natural way would be to add either dif-
ferent types of links to get temporal multiplex, or multi-
layer, networks [123,124], or space to get spatiotemporal
networks. Williams and Musolesi [192] and reference [331]
discuss how to generalize many concepts (centrality, etc.)
to when space is added to temporal networks (or time to
spatial networks). Sarzynska et al. [332] present a model
to generate null models for spatio-temporal networks of
interacting agents.

An area where we already in reference [11] anticipated
more activity is visualization. As illustrated in Figure 1
and alluded to in Sections 3.1.5, 3.1.6 and 3.1.8, tempo-
ral networks lack the intuitive visual component of static
networks. Probably this is a fundamental property that
cannot be completely altered, but there should be better
visualization methods than we have now. Highest on our
wish list is a method that both simplifies some structures
(cf. Refs. [225,226,232]) and keeps (at least some) of the
time-respecting paths (maybe at the cost of not having
time on the abscissa). We should mention Zaidi et al. [333]
who present some other ideas how to visualize temporal
networks than we discussed here.

Finally, another direction, we would love to see more
research in (mentioned in Sect. 5.2) is how to extrapo-
late results from e.g. spreading studies on empirical net-
works to larger populations. We believe there must be
other methods (to be discovered) of resampling the origi-
nal data, or scale up the results of such studies.
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Sci., edited by P. Liò, E. Yoneki, J. Crowcroft, D.C.
Verma (Springer, Berlin, Heidelberg, 2008), Vol. 5151, pp.
116–132

37. L. Sun, K.W. Axhausen, D.H. Lee, X. Huang, Proc. Natl.
Acad. Sci. USA 110, 13774 (2013)

38. Y. Kim, K. Lee, N. Shroff, IEEE Trans. Mob. Comput.
PP, 1 (2015)

39. F. Liljeros, J. Giesecke, P. Holme, Math. Popul. Stud. 14,
269 (2007)

40. A.S. Walker et al., PLoS Med. 9, e1001172 (2012)
41. T. Donker, J. Wallinga, H. Grundmann, PLoS Comput.

Biol. 6, e1000715 (2010)
42. J.J. Potterat, S.Q. Muth, R.B. Rothenberg, H.

Zimmerman-Rogers, D.L. Green, J.E. Taylor, M.S.
Bonney, H.A. White, Sex. Transm. Infect. 78, i152 (2002)

43. S. Haraldsdottir, S. Gupta, R.M. Anderson, J. Acquir.
Immune Defic. Syndr. 5, 374 (1992)

44. L.E.C. Rocha, F. Liljeros, P. Holme, Proc. Natl. Acad.
Sci. USA 107, 5706 (2010)

45. L.E.C. Rocha, F. Liljeros, P. Holme, PLoS Comput. Biol.
7, 1001109 (2011)

46. M.C. Gates, M.E.J. Woolhouse, Epidemics 12, 11 (2015)
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169. T. Aledavood, E. López, S.G.B. Roberts, F. Reed-

Tsochas, E. Moro, R.I.M. Dunbar, J. Saramäki,
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