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Abstract. We report a theoretical study on the effect of mechanical rotation of nanomagnet about a fixed
axis due to its interaction with an electromagnetic wave with a frequency approaching that of ferromagnetic
resonance. A stationary mode of rotation is investigated. We show that the rotation speed magnitude
is proportional to the squared amplitude of the wave’s magnetic field, being maximum for a circularly
polarized wave when the rotation direction changes for the opposite following a likewise change in the
direction of polarization. The role of the magnetic anisotropy of nanomagnet is discussed. The effect is
numerically estimated for molecular nanomagnet Fe8.

1 Introduction

The phenomena arising from interaction between spin
and mechanical degrees of freedom have always attracted
attention of both theoretical and experimental physi-
cists. Of the longest and most widely known ones are
the Einstein-de Haas [1,2] and Barnett [3] gyromag-
netic effects observed in macroscopic samples (see also
Ref. [4]). For a fairly long time now researchers have
been conducting studies on small free magnetic clusters
(CoN, FeN, GdN) in a beam, that also feature strong in-
teraction between spin and mechanical degrees of free-
dom (magnetic deflection experiments of Stern-Gerlach
type) [5–10].

It is obvious that the physical mechanisms behind
the Einstein-de Haas and Barnett effects are univer-
sal and, hence, should be at work in small-size (non-
macroscopic) samples, as well. This fact is pointed out
in references [11,12]. Of active research interest, therefore,
are studies of the interaction between spin and mechani-
cal rotational degrees of freedom in nanoparticles. Thus,
in reference [13] the authors report observation of how free
rotational movement of magnetic nanoparticles CoFe2O4

confined within a polymer cavity affects the frequency
shift of a ferromagnetic resonance in these particles (see
also Ref. [14]). Among the noteworthy theoretical works
are researches addressing interaction between the spin
and mechanical rotational degrees of freedom in molecular
nanomagnets Mn12 and Fe8 [15,16] (see also Refs. [17,18]).
It is shown therein that such interaction is related with the
quantum tunnelling process. The results obtained in refer-
ences [15–18] are important, since molecular nanomagnets
are viewed currently as an essential structural element in
various devices of molecular spintronics [19–23].

a e-mail: vera@ipm.sci-nnov.ru

We should emphasize one important issue involved in
the study of interaction between spin and mechanical ro-
tational degrees of freedom: magnetic nanoparticles [13]
and molecular nanomagnets [15,16] in particular can be
regarded as promising candidates for magnetic nanoro-
tors, as it is possible to control their rotation with a ro-
tating magnetic field. Important data to this effect were
obtained in the experimental study reference [24], report-
ing creation of molecular nanorotors on the basis of zinc
phthalocynaine molecules on gold surface. The rotation
axis of such nanorotors remains fixed, which is of criti-
cal importance. Although these devices are non magnetic,
they can acquire magnetic properties through implanting
magnetic atoms in them and thus function as magnetic
nanorotors controllable with a rotating magnetic field.

So, the behavior of a magnetic nanorotor (specifically,
molecular nanomagnet) in an alternating magnetic field is
a problem of active research interest currently. In this pa-
per we offer a theoretical study into the effect of molecular
nanomagnet rotation about a fixed axis under an alternat-
ing magnetic field. Such a problem has never been tackled
before. Moreover, we focus on the most promising situa-
tion, when interaction between the alternating field and
molecular magnet is of a resonance character. The prob-
lem is solved in the framework of quantum mechanics. A
dependence of the molecular nanomagnet rotation speed
on the polarization and frequency of magnetic field is es-
tablished. The effect is numerically estimated. In what
follows we will, for brevity, use the term “nanomagnet”.

The paper is organized as follows.

In Section 2 we find the quantum mechanical states of
the fundamental and first excited doublets of nanomagnet
having several axes of magnetic anisotropy and one fixed
axis of mechanical rotation.
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Section 3 deals with solution of the quantum mechan-
ical equations of motion, describing the nanomagnet be-
havior in an alternating magnetic field of electromagnetic
wave. The expression for the speed of mechanical rotation
of nanomagnet is obtained.

In Section 4 the effect in question is evaluated.
Section 5 is a summary of the obtained results.
Finally, the Appendix deals with the problem on

the degeneracy of the energy levels of a freely rotating
nanomagnet.

2 Free rotating nanomagnet

Consider a nanomagnet with a constant spin |S| =
S = const., having hard, medium and easy axes of
magnetic anisotropy (a likely example is molecular clus-
ter Fe8 [16,25,26], where S = 10). When it does not move,
its Hamiltonian can be written as:

Ĥs = −DŜ2
z − KŜ2

x, (1)

yet, when such a nanomagnet starts rotating about
axis 0Z, its Hamiltonian takes the form:

Ĥ =

(
�L̂z

)2

2I
− DŜ2

z − K
(
cosϕ Ŝx + sin ϕ Ŝy

)2

. (2)

Here x, y, z are the Cartesian coordinates in the labora-
tory frame, Ŝx,y,z are the operators of spin projections, D
and K are the magnetic anisotropy constants for the easy
and medium axes, respectively, ϕ is the angle of nanomag-
net rotation about axis 0Z, I is the nanomagnet moment
of inertia with respect to the 0Z axis, �L̂z = −i� ∂

∂ϕ is
the operator of the angular momentum with respect to
axis 0Z, that is associated with the mechanical rotation
of nanomagnet. Rotating magnet is shown schematically
in Figure 1.

We assume relation

D > K � �
2

I
, (3)

to be valid for the constants entering in equation (2). With
an accuracy to a non-essential constant member it is con-
venient to write Hamiltonian (2) in the form:

Ĥ = Ĥ(0) + Ĥ⊥, Ĥ(0) =

(
�L̂z

)2

2I
−

(
D − K

2

)
Ŝ2

z ,

Ĥ⊥ =
K

4
(
e2iϕ + e−2iϕ

) (
Ŝ2

y − Ŝ2
x

)

+
iK

4
(
e2iϕ − e−2iϕ

) (
ŜxŜy + ŜyŜx

)
. (4)

Here Ĥ(0) describes the mechanical rotation about the 0Z
axis and the rotation-independent precession of spin about
the 0Z axis in the uniaxial anisotropy field (anisotropy
constant (D −K/2)), Ĥ⊥ defines the interaction between

0 Y

Z

X

S

ϕ

Fig. 1. Nanomagnet rotating about a fixed axis 0Z (labo-
ratory frame of reference). Easy axis of magnetic anisotropy
(anisotropy constant D) is parallel to axis 0Z. Medium axis
of magnetic anisotropy (anisotropy constant K) is shown by
dashed line in plane XY .

the spin- and rotational degrees of freedom. Ĥ⊥ can be
regarded as small perturbation with respect to Ĥ(0).

We now seek the eigenfunctions and eigenvalues of
Hamiltonian Ĥ within the perturbation theory. To this
effect we will use the eigenfunctions and eigenvalues of
operator Ĥ(0), that is, the eigenfunctions and eigenvalues
of operators (�L̂z)2/(2I) and −(D −K/2)Ŝ2

z . Since oper-
ators Ŝz and −(D−K/2)Ŝ2

z commute, they have common
eigenfunctions; we will denote them as |m〉 and thus arrive
at the following:

Ŝz |m〉 = m |m〉 ,

−
(

D − K

2

)
Ŝ2

z |m〉 = −
(

D − K

2

)
m2 |m〉

≡ E(0)
m |m〉 , (5)

where m = −S,−S + 1, . . . , S − 1, S.
Likewise, since operators �L̂z and (�L̂z)2/(2I) com-

mute, we denote their common eigenfunctions as |l〉 to
obtain

�L̂z |l〉 = �l |l〉 ,
(

�L̂z

)2

2I
|l〉 =

(�l)2

2I
|l〉 ≡ E

(0)
l |l〉 , (6)

where l = 0,±1, . . ., and |l〉 ≡ eilϕ/
√

2π.
So, the eigenfunctions of operator Ĥ(0) can be repre-

sented in the form:

|m, l〉 = |m〉 ⊗ |l〉 , (7)

and the corresponding eigenvalues Ĥ(0) are

E
(0)
m,l = E(0)

m + E
(0)
l ≡ (�l)2

2I
−

(
D − K

2

)
m2. (8)
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Fig. 2. Fundamental (1) and first excited (2) doublets of nano-
magnet in the absence of mechanical rotation.

It follows from equations (7) and (8) that at zero-order
approximation and l = 0, i.e., in the absence of mechanical
rotation, the energy

E
(0)
±S,0 = −

(
D − K

2

)
S2 (9)

corresponds to fundamental doublet (|S, 0〉 and |−S, 0〉),
and the energy

E
(0)
±(S−1),0 = −

(
D − K

2

)
(S − 1)2 (10)

corresponds to first excited doublet (|S − 1, 0〉 and
|−S + 1, 0〉). Both these doublets are schematically shown
in Figure 2, using the notation

�ω0 = E
(0)
±(S−1),0 − E

(0)
±S,0 =

(
D − K

2

)
(2S − 1).

Note that frequency ω0 is essentially the frequency of the
ferromagnetic resonance.

Now, following the standard procedure (see, e.g.,
Ref. [27]), we can easily find the wave functions of the
fundamental and first excited doublets in the first approx-
imation. Using notations (7) and equation (8) instead of
|S, 0〉 and |−S, 0〉 for the wave functions of the fundamen-
tal doublet, we arrive at the following equations:

ΦS � (
1 + C

2
S

)−1/2
(|S, 0〉 + CS |S − 2, 2〉) ,

Φ−S � (
1 + C

2
S

)−1/2
(|−S, 0〉 + CS |−S + 2,−2〉) , (11)

and instead of |S − 1, 0〉 and |−S + 1, 0〉 for the wave
functions of the first excited doublet we have:

ΦS−1 � (
1 + C

2
S−1

)−1/2
(|S − 1, 0〉 + CS−1 |S − 3, 2〉) ,

Φ−S+1 � (
1 + C

2
S−1

)−1/2
(|−S + 1, 0〉

+ CS−1 |−S + 3,−2〉) . (12)

In equations (11) and (12)

CS =
〈S − 2, 2 |H⊥|S, 0〉

E
(0)
S,0 − E

(0)
S−2,2

=
〈−S + 2,−2 |H⊥| − S, 0〉

E
(0)
−S,0 − E

(0)
−S+2,−2

=
IK

√
S(2S − 1)

4I(2D − K)(S − 1) + 4�2
,

CS−1 =
〈S − 3, 2 |H⊥|S − 1, 0〉

E
(0)
S−1,0 − E

(0)
S−3,2

=
〈−S + 3,−2 |H⊥| − S + 1, 0〉

E
(0)
−S+1,0 − E

(0)
−S+3,−2

=
IK

√
3(S − 1)(2S − 1)

4I(2D − K)(S − 2) + 4�2
. (13)

It is obvious that the right-hand parts of equations (11)
and (12) are basically superpositions of states with l = 0
and l = ±2, which corresponds to inclusion of the inter-
action between spin and rotational degrees of freedom in
the first approximation.

One can easily check that wave functions Φ±S (11)
and Φ±(S−1) (12) are eigenfunctions of the operator of
the total angular momentum projection on axis 0Z:

�M̂z = �L̂z + �Ŝz. (14)

This fact naturally follows from condition
[
�M̂z, Ĥ

]
= 0 (15)

hereinafter the square brackets denote the commutator.
Note that in the first approximation the pair of

states (11) still corresponds to energy E
(0)
±S,0 (see Eq. (9)),

and (12) to energy E
(0)
±(S−1),0 (see Eq. (10)), i.e., the de-

generacy is not removed ((11) and (12) are the states with
Mz 	= 0). It is easily seen that double degeneracy occurs at
any order of the perturbation theory: each, of the energy
levels in question (Mz 	= 0), corresponds to two states that
differ in the sign of the total angular momentum projec-
tion on axis 0Z (this issue is considered in ample detail in
Appendix). In reality there is always a perturbation whose
symmetry differs from symmetry Ĥ , like, for example, per-
turbation caused by a magnetic field that is non parallel to
the 0Z axis. By taking into account such, however small,
perturbation one can remove the degeneracy. We assume
this to be the case in our study. Then the value of splitting
of the fundamental doublet is ΔS , i.e., the energies of the
states take the following form:

E
(+)
S � E

(0)
±S,0 +

ΔS

2
,

E
(−)
S � E

(0)
±S,0 −

ΔS

2
, (16)
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Fig. 3. Fundamental (1) and first excited (2) doublets of a
mechanically rotating nanomagnet.

where the state with energy E
(−)
S is described by a corre-

sponding symmetric combination of functions Φ±S , that
we denote as:

Φ1 =
ΦS + Φ−S√

2
, (17)

and the state with energy E
(+)
S corresponds to antisym-

metric combination of functions Φ±S ; we will denote it as:

Φ2 =
ΦS − Φ−S√

2
. (18)

In a similar way, the splitting value of the first excited dou-
blet is ΔS+1, i.e., the energies of the states corresponding
to this doublet will be defined as:

E
(+)
S−1 � E

(0)
±(S−1),0 +

ΔS−1

2
,

E
(−)
S−1 � E

(0)
±(S−1),0 −

ΔS−1

2
; (19)

here the state with energy E
(−)
S−1 corresponds to a sym-

metric combination of functions Φ±(S−1), denoted as:

Φ3 =
ΦS−1 + Φ−S+1√

2
, (20)

while the state with energy E
(+)
S−1 corresponds to an anti-

symmetric combination of functions Φ±(S−1), we will de-
fine it as:

Φ4 =
ΦS−1 − Φ−S+1√

2
. (21)

So, the states (Φ1, Φ2) and (Φ3, Φ4) are, respectively, the
states of fundamental and first excited doublets of a ro-
tating nanomagnet (Fig. 3).

Note that the degeneracy is removed in high orders of
the perturbation theory, hence, the relation below is valid:

ΔS , ΔS−1 
 �ω0. (22)

In our further consideration it is (17), (18), (20) and (21)
that will be used as the base functions.

Before proceeding to the next section we would like
to emphasize the obvious circumstance that is important

to our further consideration of the subject. Specifically,
from (4) we have:

∂Ŝz

∂t
= −∂L̂z

∂t
=

K

2�

(
i
(
e2iϕ − e−2iϕ

) (
Ŝ2

y − Ŝ2
x

)

− (
e2iϕ + e−2iϕ

)(
ŜxŜy + ŜyŜx

))
. (23)

It follows from equation (23) that in the case of interest
the interaction between mechanical rotational degrees of
freedom and spin degrees of freedom occurs at K 	= 0.

3 Rotation of nanomagnet in alternating
magnetic field

Let us now consider a rotating nanomagnet in an alter-
nating magnetic field of an electromagnetic wave. The al-
ternating magnetic field acts directly on the nanomag-
net spin, changing its direction, which, in turn, causes a
change in the rotational motion of nanomagnet. This is
basically the physical mechanism underlying the effect we
discuss below.

Consider an alternating elliptically polarized magnetic
field that is perpendicular to axis 0Z (i.e., the electromag-
netic wave propagates along the 0Z axis). The operator of
nanomagnet interaction with such a field has the form:

V̂ = gμBŜxH0 sin(ωt) + gμBŜyH0 sin(ωt + α), (24)

where H0 is the magnetic field amplitude, ω the frequency
of the magnetic field (ω > 0), α is the phase, g is the Lande
factor, μB is the Bohr magneton.

We will study the nanomagnet behavior, using the den-
sity matrix formalism and considering only four states
that correspond to fundamental doublet (Φ1, Φ2) and first
excited doublet (Φ3, Φ4). That is, we actually treat nano-
magnet as a four-level system. Such an approach is justi-
fied, since we reduce our consideration to the case of fairly
low temperatures, when in the state of thermodynamic
equilibrium only fundamental doublet (Φ1, Φ2) is popu-
lated, and because the only transitions under the alternat-
ing magnetic field are those between the states of the fun-
damental and first excited doublets: (Φ1, Φ2) � (Φ3, Φ4).

In the common relaxation-time τ model the
Schrodinger representation of equations for the density
matrix elements will have the form [28]:

∂ρkk(t)
∂t

= i�−1
[
ρ̂(t), Ĥ + V̂

]
kk

+
(
ρ
(0)
kk − ρkk(t)

)
τ−1,

∂ρkj(t)
∂t

= i�−1
[
ρ̂(t), Ĥ + V̂

]
kj

− ρkj(t)τ−1, (k 	= j).

(25)

Here indices k, j = 1, 2, 3, 4 correspond to functions Φ1,
Φ2, Φ3, Φ4. The matrix elements of operator V̂ are read-
ily found, since we can easily find the matrix elements of
operators Ŝx,y (in the zeroth approximation):

(Sx)13 = (Sx)31 = (Sx)24 = (Sx)42 =
√

2S,

(Sy)14 = −(Sy)41 = (Sy)23 = −(Sy)32 = −i
√

2S.
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In equation (25) ρ
(0)
kk are the values of the diagonal ele-

ments of density matrix at thermodynamic equilibrium.
Following from the assumption of only fundamental dou-
blet being populated at thermodynamic equilibrium state,
for ρ

(0)
kk we derive:

ρ
(0)
kk =

⎧⎨
⎩

1
2
, k = 1, 2,

0, k = 3, 4.
(26)

It is obvious that equation (34) is valid at temperatures
satisfying the condition

ΔS 
 kT < �ω0, (27)

(see Fig. 3 and Eq. (22)). For estimations we can take
ΔS � 10−6 K, �ω0 ∼ 5 K (see, e.g., Refs. [26,29]), so that
condition (27) is fulfilled at T ∼ 1 K.

Our goal is to calculate the angular speed of rotation
of nanomagnet about the 0Z axis. Since operator of the
angular speed is Ω̂ = I−1

�L̂z, in accordance with the
mean value definition we obtain:〈

Ω̂
〉

= Sp(ρ̂I−1
�L̂z). (28)

We are interested in the stationary rotation mode, which
is the case at t � τ . Therefore, we seek a stationary (cor-
responding to t � τ) solution to system (25). It can be
easily found based on some simplifying assumptions. As a
first step, we use a resonant approximation (the rotating
wave approximation, see Refs. [27,30]). This approxima-
tion imposes a restriction on frequency: ω − ω0 
 ω0.
Secondly, we assume ΔS = ΔS−1 = 0. This assumption
makes sense because the effect in question is basically un-
related to the condition ΔS 	= 0 and ΔS−1 	= 0 and, be-
sides, relation (22) holds here. Based on these assumptions
we derive from (25):

ρ34 + ρ43 = −(ρ12 + ρ21)

=
2g2μ2

B�
−2SH2

0 τ2 sin α

1 + (ω − ω0)2τ2 + 8g2μ2
B�−2SH2

0 τ2(1 + 4 cos2 α)
.

(29)

Next, from equations (17), (18) and (20), (21) given (3) it
follows:

(Lz)12 = (Lz)21 � 1
16

(
K

D

)2

,

(Lz)34 = (Lz)43 � 3
16

(
K

D

)2

. (30)

Then, using equations (28)–(30) we find for the mean value
of the angular speed of nanomagnet rotation about the 0Z
axis:

Ω ≡
〈
Ω̂

〉
� �

4I

(
K

D

)2

× g2μ2
B�

−2SH2
0τ2 sin α

1 + (ω − ω0)2τ2 + 8g2μ2
B�−2SH2

0 τ2(1 + 4 cos2 α)
.

(31)

In deriving equation (31) we have taken into account
that S � 1.

First of all, note the conclusion that follows from equa-
tion (31): the effect of mechanical rotation occurs only at
K/D 	= 0. This result is fully consistent with the state-
ment that, in the case of interest, interaction between the
mechanical rotational- and spin degrees of freedom takes
place at K 	= 0 (see end of Sect. 2). It is also seen that the
angular speed of rotation is proportional to the squared
amplitude of the magnetic field. The speed is maximum
for a circular polarization of magnetic field (α = ±π/2),
when the direction of rotation of nanomagnet changes for
the opposite, following a change in the field circular polar-
ization from right to left-hand and vice versa. In the case
of linear polarization (α = 0) the rotation speed is zero.
The rotation speed value depends on relaxation time τ :
the smaller the relaxation time (i.e., the higher the relax-
ation process intensity), the lower the speed of rotation.

4 Numerical estimation

It should be noted, in the first place, that the resulting es-
timates highly depend on quantity τ . Unfortunately, there
is no reasonably reliable data on the significance of this
quantity for freely rotating nanomagnets. Yet, we assume
that τ should not be smaller than the time of spin re-
laxation in crystals of magnetic molecules. According to
spectroscopic measurements data [29], the spin relaxation
time in Fe8 crystals is on the order of 10−9 s. We assume
τ ∼ 10−9 s, which is certain to not lead us to overestima-
tion of the effect value. Therefore, at reasonable values of
the radiation power on the order of 1 W/cm2, which corre-
sponds to the magnetic field amplitude H0 ∼ 6× 10−2 G,
we have:

g2μ2
B�

−2SH2
0 τ2 
 1. (32)

Then, instead of equation (31) we will have:

Ω � �

4I

(
K

D

)2
g2μ2

B�
−2SH2

0τ2 sin α

1 + (ω − ω0)2τ2
. (33)

The estimations were made for a molecular cluster Fe8:
based on the data from reference [25] we arrived at
K = 0.092 K, D = 0.402 K. To avoid confusion, note that
we here use the notations for the anisotropy axes and
anisotropy constants (see Eq. (1)), that are different from
those in reference [25]. For a molecule inertia moment, ac-
cording to reference [16], we may take I ∼ 10−35 g cm2

(thus making the use of relation (3) justified). In result, for
a circular polarization of the wave, at resonance ω = ω0

(according to Ref. [29] ω0 ∼ 2π × 102 GHz) and power of
the order of 1 W/cm2 we obtained: Ω � 10 rad/s.

5 Discussion and conclusion

Our consideration is based on usage of the density ma-
trix formalism; yet, there is a fairly simple treatment of
the physics behind the effect in question. It involves using
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Page 6 of 8 Eur. Phys. J. B (2015) 88: 51

the classical equations of motion for spin degrees of free-
dom with minimum of quantum mechanics to describe the
mechanical rotational degrees of freedom and their inter-
action with the spin degrees of freedom. First of all, we
recall that interaction between the spin degrees of free-
dom and mechanical rotational degrees of freedom takes
place only at K 	= 0. Therefore, in a zero approximation
(K = 0) the behavior of spin in an external magnetic field
in no way is related with nanomagnet rotation and, due
to K = 0, again, there are no effects of magnetic quan-
tum tunnelling. Further, as we consider large spin values
(S � 1) and neglect the quantum tunnelling effects, we
can use the classical Landau-Lifshitz-Gilbert equation for
the spin S. For definiteness, we look at the situation when
the external field is circularly polarized, α ≡ π/2. Such a
field interacts (under the resonance approximation) only
with nanorotors having Sz > 0. For components Sx,y,z we
easily derive the equations:

∂Sx

∂t
=

2
�

DS · Sy − 1
�
gμBSzH0 sin ωt − 1

τ
Sx,

∂Sy

∂t
= −2

�
DS · Sx − 1

�
gμBSzH0 cosωt − 1

τ
Sy,

∂Sz

∂t
=

1
�
gμB (Sx sin ωt + Sy cosωt) +

2
τ

(S − Sz) . (34)

Here τ is the relaxation time. In writing (34) we used
the approximation |Sz − S| 
 Sx, Sy for the smallness
of deflection S from equilibrium. The stationary (t � τ)
solution of equation (34) is easily found, so, if (32), we
derive from equation (34):

Sz − S � −1
2

g2μ2
B�

−2SH2
0τ2

1 + (ω − 2DS�−1)2τ2
. (35)

Note that in terms of quantum mechanics the result (35)
corresponds to the resonance interaction of a circular-
polarized field with nanorotors in the states ΦS and ΦS−1

(see Eqs. (11) and (12)).
Now we take into account the mechanical rotational

degrees of freedom and their interaction with the spin de-
grees of freedom, i.e., allow for K 	= 0. This interaction, as
seen from equations (11) and (12), manifests itself through
state ΦS being a superposition of |S, 0〉 and |S − 2, 2〉,
and state ΦS−1 being a superposition of |S − 1, 0〉 and
|S − 3, 2〉. From expressions (11)–(13), considering equa-
tion (3), it follows that in transition from state ΦS to state
ΦS−1 the quantum mechanical mean value of the projec-
tion of spin Sz changes roughly by −1, while the quan-
tum mechanical mean value of the mechanical moment IΩ
changes by about �/8(K/D)2. With this in mind, we can
find the change in the mechanical moment, corresponding
to variation of the spin projection by the value (35), which
makes it easy to obtain the expression for the angular
speed:

Ω � �

16I

(
K

D

)2
g2μ2

B�
−2SH2

0 τ2

1 + (ω − 2DS�−1)2τ2
. (36)

Compare equations (36) and (33). Since equation (36) cor-
responds to α ≡ π/2, and in equation (33) ω0 ≈ 2DS/�

(D � K, S � 1), equations (36) and (33) differ only by
an insignificant numerical factor. The above calculations
and our treatment of the problem are fairly simple; yet,
as easily seen, they provide an insight into the physics of
the problem.

Hypothetically, this problem could have been solved
entirely as the classical one, which is beyond our consid-
eration. It is doubtful, though, that in the classical model
the calculations would have been less complicated than in
our quantum mechanical approach that is based on the
density matrix formalism. We stress again that this ap-
proach is quite simple in terms of mathematical calcula-
tions.

Now, let us sum up.
Based on the quantum mechanical approach we have

found a solution to the problem of a molecular nanomag-
net rotating about a fixed axis under the action of an ellip-
tically polarized wave propagating along the rotation axis.
The wave frequency corresponds to the frequency of fer-
romagnetic resonance. A stationary mode of rotation was
considered, that is realized on a time scale largely in ex-
cess of the characteristic time of relaxation. It was shown
that the speed of rotation is proportional to the squared
amplitude of the magnetic field of the wave and is max-
imum for a circular polarization of the latter. A change
in the circular polarization direction leads to a change in
the direction of rotation. Estimations of the effect, made
for molecular cluster Fe8 have shown that at temperature
∼1 K and fairly modest values of power ∼1 W/cm2 the
speed of rotation may reach 10 rad/s.

The research is supported by the grant (the agreement of
August 27, 2013 N.02.B.49.21.0003 between The Ministry
of education and science of the Russian Federation and
Lobachevsky State University of Nizhni Novgorod) and by
the Russian Foundation For Basic Research (RFBR #15-02-
03046).

Appendix: Degeneracy of the energy levels
of a freely rotating nanomagnet

Here we show the energy levels corresponding to
Hamiltonian (4) to be degenerate in the case Mz 	= 0. Op-
erators Ĥ (Eq. (4)) and �M̂z (Eq. (14)) are commutative
(see Eq. (15)), we will define their common eigenfunctions
as ΦE,Mz . These functions correspond to the states with
certain values of energy E and total angular momentum
�Mz = �(m + l).

ĤΦE,Mz = EΦE,Mz , (A.1)

M̂zΦE,Mz = MzΦE,Mz . (A.2)

We now represent functions ΦE,Mz as a series that is
bound to satisfy equation (A.2):

ΦE,Mz =
∑
m

Cm,Mz−m |m, Mz − m〉, (A.3)

where |m, Mz − m〉 ≡ |m, l〉 = |m〉 ⊗ |l〉 (see Eq. (7)).
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The process of finding ΦE,Mz , i.e., the values of
Cm,Mz−m is reduced to solving equation (A.1) in the ma-
trix form. For the basis functions we use |m, Mz − m〉.
Then the matrix elements of operator Ĥ are:

Hm,Mz−m;m,Mz−m = H
(0)
m,Mz−m;m,Mz−m

= E
(0)
m,Mz−m, (A.4)

see equation (8), and

Hm,Mz−m;m−2,Mz−m+2 = (H⊥)m,Mz−m;m−2,Mz−m+2

= −K

4

√
(S + m)(S − m + 1)(S + m − 1)(S − m + 2).

(A.5)

Using equations (A.4) and (A.5) from (A.1), we will arrive
at a set of 2S + 1 equations for Cm,Mz−m:

(
E

(0)
m,Mz−m − E

)
Cm,Mz−m

− K

4

√
(S + m)(S − m + 1)(S + m − 1)(S − m + 2)

× Cm−2,Mz−m+2

− K

4

√
(S + m + 2)(S − m − 1)(S + m + 1)(S − m)

× Cm+2,Mz−m−2 = 0. (A.6)

It is easily seen that, if S is an integer, the system (A.6)
splits into two independent subsystems: one containing
S+1 equations for m = S, S−2, . . . ,−S+2,−S, the other
having S equations for m = S−1, S−3, . . . ,−S+3,−S+1.
If S is a half-integer, one subsystem will include S + 1/2
equations for m = S, S − 2, . . . ,−S + 3,−S + 1, while the
other will also have S + 1/2 equations for m = S − 1, S −
3, . . . ,−S + 2,−S.

Let us change Mz → −Mz in (A.6), i.e., use the equa-
tions for Cm,−Mz−m. Quantities Cm,−Mz−m correspond to
the states with the value of the total angular momentum
−�Mz (see Eq. (A.3)). We now make one more change
of m → −m in (A.6) simply for convenience, since both
m and −m have the same values from −S to S. Also,
we make use of the fact that E

(0)
m,Mz−m = E

(0)
−m,−Mz+m

(see Eq. (8)). Thus, instead of (A.6) we will eventually
arrive at:
(
E

(0)
m,Mz−m − E

)
C−m,−Mz+m

− K

4

√
(S + m)(S − m + 1)(S + m − 1)(S − m + 2)

× C−m+2,−Mz+m−2

− K

4

√
(S + m + 2)(S − m − 1)(S + m + 1)(S − m)

× C−m−2,−Mz+m+2 = 0. (A.7)

Comparing between equations (A.6) and (A.7) one can see
that the coefficients matrices of those systems, coincide.
This implies that solution of the sets (A.6) and (A.7) will

yield the same values for energy En (n is their index num-
ber). We will denote solutions of the system (A.6), corre-
sponding to a certain value of En, as Cm,Mz−m(En), and
those for system (A.7), that correspond to the same En,
as C−m,−Mz+m(En). Now, in compliance with (A.3), we
write the eigenfunction corresponding to energy En and
angular momentum Mz:

ΦEn,Mz =
∑
m

Cm,Mz−m(En) |m, Mz − m〉 (A.8)

and the eigenfunction corresponding to energy En and
angular momentum −Mz:

ΦEn,−Mz =
∑
m

C−m,−Mz+m(En) |−m,−Mz + m〉 .

(A.9)
In equations (A.8) and (A.9), m lies within the same inter-
val of values. We consider the case Mz 	= 0, when the ba-
sis functions |m, Mz − m〉 and |−m,−Mz + m〉, once Mz

is fixed, do not coincide even at different values of m for
both the functions. Thus, ΦEn,Mz 	= ΦEn,−Mz , which tes-
tifies to the occurrence of the energy levels degeneracy.

It should be emphasized that the approach used in this
study is quite common, and the obtained result is in per-
fect agreement with the findings in reference [16], in which
a rotating nanomagnet is regarded as a mechanically rigid
two-state spin system. Also note that, as shown in refer-
ence [16], condition Mz 	= 0 corresponds to the low-energy
states of a molecular cluster Fe8, which are of interest to
this study. Finally, note that there is no degeneracy in
the case Mz = 0, yet, the issue is beyond the scope of
our present research. This fact is proved in reference [16],
based on approximations.
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