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Abstract. Crowd simulation is rapidly becoming a standard tool for evacuation planning and evaluation.
However, the many crowd models in the literature are structurally different, and few have been rigorously
calibrated against real-world egress data, especially in emergency situations. In this paper we describe a
procedure to quantitatively compare different crowd models or between models and real-world data. We
simulated three models: (1) the lattice gas model, (2) the social force model, and (3) the RVO2 model, and
obtained the distributions of six observables: (1) evacuation time, (2) zoned evacuation time, (3) passage
density, (4) total distance traveled, (5) inconvenience, and (6) flow rate. We then used the DISTATIS
procedure to compute the compromise matrix of statistical distances between the three models. Projecting
the three models onto the first two principal components of the compromise matrix, we find the lattice
gas and RVO2 models are similar in terms of the evacuation time, passage density, and flow rates, whereas
the social force and RVO2 models are similar in terms of the total distance traveled. Most importantly,
we find that the zoned evacuation times of the three models to be very different from each other. Thus
we propose to use this variable, if it can be measured, as the key test between different models, and also
between models and the real world. Finally, we compared the model flow rates against the flow rate of an
emergency evacuation during the May 2008 Sichuan earthquake, and found the social force model agrees
best with this real data.

1 Introduction

Crowd simulation is an area that has been the subject
of a significant amount of multidisciplinary work over the
last few decades [1–3]. Its applications range from sim-
ulating crowds for movies [4,5] and games [6,7] to ana-
lyzing pedestrian behavior [8–10] and preparing for fire
evacuations and similar emergencies [11–13]. The earliest
attempts to simulate crowds generally adopted a macro-
scopic approach [14,15], where there is no explicit notion
of an individual. Later, with increasing computational re-
sources and with availability of observational data on an
individual level [16–18], modelers were able to develop mi-
croscopic approaches [5,8] for application in areas where
it was necessary to model and analyze individuals in the
crowd. For example, in a simulation of evacuation, knowl-
edge of the movement of crowds could reveal methods to
improve crowd flow and evacuation speed.

One of the earliest and seminal works in individual-
based motion planning was Craig Reynolds’s model of
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coordinated animal motion such as bird flocks and fish
schools [5]. Okazaki and Matsushita [19] assigned mag-
netic poles to goals, agents and obstacles to model move-
ment. Subsequently, Helbing’s social force model [8] was
developed, which is still one of the most popular models of
movement in crowds. More recently, there have been sev-
eral velocity-based approaches to motion planning, such as
the synthetic vision based model [20] and the reciprocal
velocity obstacle model [21–23].

The advocation of simulation-based analysis has be-
come increasingly common over the last decade. Some
well-know applications include analysis of the yearly
Muslim Hajj [24], or more recently the Love Parade disas-
ter, Germany 2010 [25]. In the case of the latter, models
and expertise had been used to guarantee the safety of the
event, only for unforeseen circumstances to result in the
deaths of 21 individuals. Clearly these real world examples
emphasize the critical role that crowd modelling plays in
safety preparation and planning, this in turn emphasizes
the need for understanding the model dynamics, limita-
tions and similarities. The extent to which these models
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are capable of accurately predicting the motion of a crowd
is therefore critical for planning and safety.

Ideally these models should be validated against real-
world data from all scenarios, for all cultures and for all
varieties of crowd composition. Unfortunately real world
data regarding egress or emergency situations is limited,
often incomplete (the initial conditions are hard to know)
and certainly not controlled. Even in the rare circum-
stances where data is available this often describes mea-
surements and phenomena at the macro-scale, e.g., flow,
density, average speed, etc. Because these models of indi-
viduals exhibit emergent behaviors at the mesoscopic and
macroscopic scales, it is in general hard to tell whether
the dynamics at the individual level are correct. The best
researchers can realistically hope for is to collect micro-
scopic data for a single scenario to calibrate the model.
An alternative approach to the data-intensive one is to
instead look quantitatively at the fundamental dynamics
of the models and understand where these models differ, at
the same time identifying common aspects of the models.
This will aid in understanding fundamental aspects of all
crowd models and offer insight into real-world dynamics
of human crowds.

While much of the existing research does offer basic
comparison of proposed models with existing models to
demonstrate their usefulness, there is no existing quan-
titative comparison of the differences and similarities of
these models to tell which is most accurate. The objective
of this paper is to demonstrate a methodology for quanti-
tative comparison of simulation models in a simple egress
simulation. For this, we choose three popular models that
are structurally very different. Since our focus is on the
comparison methodology, we do not worry about specific
versions of the models, in particular recent modifications
and enhancements that are supposed to produce more re-
alistic crowd behaviors.

The contribution of the paper is then three-fold: firstly,
the analysis and comparison of these models provide in-
teresting insight into the consequence of adopting each in
particular forms of crowd or egress simulation. Secondly,
the systematic approach we describe could be used in fu-
ture to compare further models and develop a standard
method of comparison for crowd simulation. Finally, the
paper conclusion identifies a single measurable metric that
is most effective in distinguishing the behaviour of the
models.

The remainder of this paper is organised as follows.
The models that are consider in the comparison are first
described in Section 2; Section 3 describes the experi-
ments that were conducted and the methodology for anal-
ysis. Significant observations from the simulations are
presented and analyzed in Section 4. Finally, Section 5
concludes the paper.

2 Models

In this section we describe the three individual (or micro-
scopic) models that are compared in this paper. We use
the general term agent to refer to individuals within each

of the models. The lattice gas model is a probabilistic ap-
proach where the future location of an agent is probabilis-
tically determined based on the current configuration of
its neighborhood. This implies that the same initial con-
figuration can produce different results during different
runs. On the other hand, in the social force model and re-
ciprocal velocity obstacle model, agents find their ways to
their destinations via deterministic collision-avoiding cal-
culations. As a result these models produce the same result
on multiple runs for a particular initial configuration.

2.1 Lattice gas model

A cellular automation (CA) model is one in which space
and time are discrete. Furthermore, the state space of a
CA model is also discrete and finite. In each time step
the values of all cells are updated synchronously based on
the values of cells in their neighborhoods. Depending on
the type of neighborhood (i.e., von Neumann, Moore), and
the type of lattice (triangular, square, hexagonal, etc.),
the exact number of cells in the neighborhood of a given
cell can vary [26]. Lattice gas models are CA models that
make use of a discretized version of the Boltzmann trans-
port equation to model motion [27–29]. Advances in this
modeling area include the extended floor field model [30]
in which agents interact through virtual traces that act
like the pheromones in chemotaxis, and the SWARM in-
formation model [31] which uses multiple floor fields to
model transmission of knowledge between agents. In this
study we use the model by Tajima and Nagatani [32].
In contrast to later CA models with additional features
like bi-directional movement [33] and vision impairment
during evacuation [29], this original model is simple, and
adequate for our model comparison purpose.

A square grid is used, and each cell can be occupied by
at most one person. The person performs a random walk
biased towards the single exit in the room. For example, in
Figure 1a, the probability that the person takes a step in
the +y direction is Py = (1−D)/3+Dey/(ex + ey), while
the probability that it takes a step in the −x direction
is P−x = (1 − D)/3 + Dex/(ex + ey), since the intended
direction e has positive projections along the +y and −x
directions. Along the +x direction, for which e’s projec-
tion is negative, the probability that the person takes a
step in the +x direction is Px = (1 − D)/3. Here we see
that the random walk probabilities contain an unbiased
component (1−D)/n, which is the same for all n permis-
sible directions (in the Tajima-Nagatani model, the −y
direction is not permitted), as well as a biased component
D = 0.7 that favours movement towards the exit.

2.2 Social force model

The social force model is one of the most popular mod-
els for motion planning in crowds [34–36]. This model
is based on the idea that pedestrians move in response
to fictitious attractive or repulsive social forces produced
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Fig. 1. Four out of eight possible configurations of a walker on the square lattice moving towards an exit in the direction e
shown: (a) unobstructed walker, (b) walker obstructed to the left, (c) walker obstructed to the left and top, and (d) completely
obstructed walker.

by obstacles and other pedestrians. Over the years, sev-
eral extensions have been made to the social forces model
like the modeling of grouping behavior [34]. In this paper,
we use the Helbing-Molnár-Farkas-Vicsek (HMFV) social
force model [8], which is tweaked from the original model
introduced by Helbing and Molnár in 1995. In the original
model

mi
dvi

dt
= f i +

∑
j( �=i)

f ij +
∑
W

f iW (1)

proposed by Helbing and Molnár [8], three types of forces
act on a given agent i with mass mi, instantaneous posi-
tion ri(t), and instantaneous velocity vi(t). The first is a
restoring force

f i = −mi
vi − v0

τi
(2)

that steers the agent towards the desired velocity v0 at a
rate determined by the characteristic time τi = 1. Here

v0 = (1 − p)V0ei(t) + p 〈vj〉i , (3)

where V0 is the preferred speed, ei is a vector that points
towards the exit, and (1 − p) is the weight given to this
desired velocity. With a weight of p, agent i also adapts
to the average velocity 〈vj〉i in its neighborhood. When p
is small, agent i moves more along its intended direction
ei(t), whereas if p is large, agent i tends to follow where its
neighbors are going. We can therefore tune p from p ≈ 0
(self-directed normal egress) to p ≈ 1 (panic-driven herd-
ing during emergency evacuations). In this paper, we used
p = 0.2 to simulate an emergency evacuation situation.

The second is a repulsive force

f ij =
{
Ae(Rij−dij)/B + kη (Rij − dij)

}
nij

+ κη (Rij − dij)Δvt
jitij , (4)

where

η(x) =

{
x, if x ≥ 0;

0, if x < 0
(5)

that mimics the psychological tendency of agents i and j
to move away from each other if they are too close. Here
Rij = Ri + Rj is the sum of radii of the two agents, dij =
|ri − rj | is the physical distance between the two agents,
and nij = (n1

ij , n
2
ij) = (ri − rj)/dij is the unit vector

pointing from agent j to agent i. Additionally, A = 2000 N
and B = 0.08 m are the repulsion coefficient and the fall-
off length of interacting agents, respectively [37]. Helbing
and Molnár also found it necessary to introduce two other
terms in the interaction force when agents i and j are in
contact with each other, i.e. dij < Rij . This counteracting
body compression term kη(Rij − dij)nij and sliding fric-
tion term κη(rij − dij)Δvt

jitij are crucial for getting real-
istic behaviors of panicking crowds. Here tij = (−n2

ij , n
1
ij)

is the tangential direction and Δvt
ji = (vj − vi)tij is the

tangential velocity difference.
Finally, in the third force

f iW =
{
Aie

(Ri−diW )/Bi + kη (Ri − diW )
}

niW

− κη (ri − diW ) (vitiW ) tiW , (6)

the first and second terms repels agent i from a wall that
it is diW away from, while the third term (which is neg-
ative) is introduced to mimic the observation that people
move faster near walls when they are in crowded situa-
tions. Here, niW is the normal vector of the wall, and tiW

is the tangent vector of the wall. Also, k = 12 000 kg/s2
and κ = 24 000 kg/ms are, respectively, the body force
constant and the sliding friction force constant used.
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2.3 Reciprocal velocity obstacles model

The third model we consider is the reciprocal velocity ob-
stacles (RVO) model. In this model, the time to the next
collision is calculated based on the relative velocities of
N agents. Each agent then changes its velocity {vi}N

i=1 to
maximize this time to collision. By continuously updating
the velocities in this manner, collisions are avoided. This
algorithm was first proposed by Fiorini and Shiller [38],
but was first used in multi agent systems in reference [39].
Since then there have been several modifications and im-
provements to the algorithm [10,22,40,41], although the
underlying idea remained the same. In this paper, we use
the RVO2 model introduced by Guy et al. [22], where
the collision avoidance computation is based on compu-
tational geometry and linear programming.

Given a preferred velocity, RVO2 helps an agent find
the velocity closest to the preferred velocity that will en-
able it to avoid collisions with all other agents. This is done
by determining for each neighboring dynamic and static
obstacle an Optimal Reciprocal Collision Avoidance line
(ORCA line) . Each ORCA line determines the half plane
in the velocity plane where the agent’s velocity should
lie to ensure that no collision occurs with that particu-
lar obstacle for the next τ seconds. τ is a parameter that
specifies the number of seconds for which the chosen ve-
locity should avoid a collision. From the set of half planes
thus obtained, the optimal collision-avoiding velocity can
be determined as the velocity within the permissible re-
gion for all the half planes that is closest to the preferred
velocity. This can be determined efficiently using linear
programming. Besides the speed and efficiency of the al-
gorithm, another strong appeal of this model is that we
need only set one parameter τ . For the experiments in this
paper we use two values of τ ; 0.5 seconds or 10 simulation
time steps for avoiding dynamic agents and 0.05 seconds
or 1 simulation time step for avoiding static obstacles.
The value of τ translates in practical terms to how early
a walker tries to avoid a collision with an obstacle.

3 Methodology

In this section we explain the simulations that were car-
ried out and the analysis done. Java 6 and the MASON
simulation framework [42] were used for creating and run-
ning the simulations. The simulated scenario consists of
agents evacuating from a simple rectangular room with a
single exit. The dimensions of the room are shown in Fig-
ure 2. Evacuation of the room was simulated with N = 50,
100, 150, 200, 300, 500 and 1000 agents whose locations
were randomly distributed within the room. For each N ,
we ran 100 simulations for each model, and the positions
and velocities of all agents at all time steps were collected.
For meaningful comparison between the three models, we
assumed that each agent is a perfect circle with radius
R = 15 cm [43], that has a preferred speed of 1.3 ms−1,
and a maximum speed of 2.6 ms−1 [44]. For the social force
model we also assumed that all agents have the same mass
of 60 kg.

26.4 m

29.4 m

0.9 m

24.6 m

27.6 m

13.2 m

1.2 m

1.2 m

Fig. 2. The environment setup used for the simulations in this
paper.

Where possible, we have used the same settings for all
three models to ensure a fair comparison. The values used
for the remaining parameters required for the models was
given in Section 2 along with the respective models. How-
ever, to the best of our knowledge, only the social force
model has been calibrated against real world data [45].
The other two models are not calibrated beyond choosing
a reasonable and believable model and the values chosen
are taken such that they produce empirically believable
results.

3.1 Measurements

Depending on the context and motivation of the model
there are several metrics that are generally used. For CA
models that are generally used for studying macroscopic
patterns, it is common to measure macro variables like the
mean evacuation time [29] and flow rate [32]. For models
like social force where the motivation is to study interac-
tions at a more granular level, it is common to make em-
pirical and qualitative observations like the lane effect [8].
Sometimes quantitative metrics like density-dependence of
the flow or velocity are also measured [46]. From a graph-
ics perspective, where performance is key, computation
time [20], frame rate and run time per frame are generally
measured against the number of walkers [23].

In this paper, we performed two main classes of mea-
surements: time-based and distance-based measurements.
For time-based measurements, we first measured the evac-
uation time distributions for different number of agents.
To better understand the stages in the evacuation, we also
divide the room into six different zones (see Fig. 3) to mea-
sure the evacuation time sub-distribution. The outer radii
of zones 1, 2, 3, 4, 5 and 6 are 5 m, 10 m, 1 m, 20 m, 25 m
and 30 m, respectively. We also measure the flow rate at
the exit as a function of time for each model.

For distance-based measurements, we traced the tra-
jectories of all agents to obtain the distribution of total
distance travelled going from the initial position to the
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Zone 1
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Fig. 3. In our simulations, agents are grouped into six zones
based on their initial distances from the exit. The outer radii
of zones 1, 2, 3, 4, 5 and 6 are 5 m, 10 m, 15 m, 20 m, 25 m
and 30 m, respectively.

exit. Here, the total distance travelled Di by agent i is
just the sum of its displacements

∑Ti

t=0 ||ri(t+1)−ri(t)||,
where Ti is the evacuated time of agent i. We also divide
the room into 100 × 100 cells, and count the number of
agents passing through each cell as the simulation pro-
gresses. This is then visualized as a heat map. Finally,
we measure the ratio of the total distance travelled Di

by agent i to the minimum distance Dmin it would cover
if it evacuated along a straight line. (For lattice model,
Dmin is the Manhattan distance between initial position
of agent and exit.) This in some sense quantifies the “in-
convenience”, Ii experienced by the agent i during the
evacuation.

Ii =
Di

Dmin
. (7)

3.2 DISTATIS

After making six different measurements on three mod-
els, we discovered that when we look at the flow rates,
the lattice gas model is more similar to the RVO2 model.
However, if we look at the total distance travelled, the so-
cial force model is more similar to the RVO2 model. If we
look at the zoned evacuation times, we find that the three
models have very different distributions (see Sect. 4.1).
Since we do not know a priori which measurements best
discriminate the three models (or for that matter, best dis-
criminate models from the real world), we want to be able
to compare the three models quantitatively, incorporating
information from all six measurements.

To do so, we compute the Jensen-Shannon
divergence [47]

DJS [fkμ, fkν ] = H [fk] − 1
2
H [fkμ] − 1

2
H [fkν ] ≥ 0 (8)

between the distributions fkμ(z) and fkν(z) for measure-
ment k of models μ and ν. Here, z is a continuous variable
like evacuation time, distance travelled, or inconvenience,

H [f ] = −
∫

dz f(z) ln f(z) (9)

is the Shannon information function, and

fk(z) =
1
2

[fkμ(z) + fkν(z)] . (10)

If fkμ(z) and fkν(z) are highly similar, we will get
DJS [fkμ, fkν ] ≈ 0, whereas if fkμ(z) and fkν(z) are very
different, DJS [fkμ, fkν ] � 0, i.e. the Jensen-Shannon di-
vergence qualifies as a distance metric. In this way, we
obtain six 3 × 3 distance matrices Dk.

Then, we use the DISTATIS method [48] for analyzing
multiple distance matrices. This is a generalization of the
method of principal component analysis (PCA). STATIS
is an acronym for the French expression “Structuration des
Tableaux à Trois Indices de la Statistique”, which roughly
means “structuring three way statistical tables”. The dif-
ference between a straightforward application of the PCA
method and the DISTATIS method is shown in Figure 4.
Instead of six different PCAs for the distance matrices
obtained from the six different variables measured, and
inevitably end up with conflicting conclusions on which
models are more similar, we standardize the six distance
matrices, and ask which variables are more similar to each
other.

The idea behind DISTATIS is that the data points are
similarly clustered in two variables, if their standardized
distance matrices in these two variables are similar to each
other. Therefore, if we compute the cross correlations be-
tween variables, we will discover which variables give more
similar outcomes to which other variables through a PCA.
Components of the first eigenvector obtained from this
PCA tells us how important each variable is. By weight-
ing the distance matrices of each variable by its component
in the first eigenvector, we construct a compromise matrix
whose matrix elements give us the most reliable similar-
ity/dissimilarity between data points. A final PCA of this
compromise matrix then gives the most reliable groups
of data points. In Figure 12, we show the six independent
PCA results superimposed on the PCA of the compromise
matrix.

4 Results and discussion

The six measurements on the simulations are the (1) evac-
uation time, (2) zoned evacuation time, (3) passage den-
sity map, (4) total distance traveled, (5) inconvenience
and (6) flow rate.
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Fig. 4. In many classification problems, we can define differ-
ent distance metrics for the same set of data points to measure
how dissimilar they are to each other. In this figure we show
three different distance matrices D1, D2, and D3. If we per-
form principal component analysis (PCA) on them separately
(PCA1, PCA2, PCA3), we are not likely to agree on which
data points are more similar to each other. In the DISTATIS
method, we first standardize the distance matrices by center-
ing and rescaling, to get S1, S2, and S3. If two data points are
indeed more similar to each other than they are with the third,
then we expect this similarity structure to be reflected in S1,
S2, and S3, i.e. two standardized distance matrices would have
very similar patterns of matrix elements. With this in mind, we
reshape the matrices S1, S2, and S3 to make them into vectors
of distances. We then compute the cross correlations between
these vectors, before performing PCA on the correlation ma-
trix C. This PCA tells us which distance matrices agree with
each other more, and which less. The result is a consensus be-
tween different distance metrics, based on which a single PCA
will discover the similarity structure between the data points.

Here we show the results for (1) evacuation time
(Fig. 5) and (2) zoned evacuation time (Fig. 6), (3) passage
density map (Fig. 7), (4) total distance traveled (Fig. 8),
(5) inconvenience (Fig. 9) and finally flow rate (Fig. 10)
for all three models, with different number of agents.

4.1 Evacuation time

As Figure 5 shows, the evacuation time distributions for
all models have a uniform sub-distribution in the middle of
the evacuation, which signals congestion at the exit, once
we have N > 50 agents. However, in the RVO2 model this
uniform sub-distribution is flanked by two small peaks.
These two small peaks suggest a higher evacuation rate
just before congestion sets in and just before congestion
dissipates in the RVO2 model. This is not observed in real
crowds, and hence is clearly an artifact of the model.

Comparing the three models, we find that the social
force model has the longest evacuation times of up to
five minutes. More importantly, careful inspection reveals
fluid-like crowd dynamics around the exit in the RVO2
and lattice gas models. These can be seen in our videos 1.
In the RVO2 model, an obvious back flow can also be seen
during the sudden gush of agents toward the exit. Due to
the strong repulsion forces, we see a solid-like behavior in
the social force model when the exit becomes congested2.

In addition, we divided the room into six zones, as
shown in Figure 3, based on the distance to the exit, to de-
termine how strongly the crowds mix in the three models.
The distributions of zoned evacuation times are shown in
Figure 6. These tell us that mixing is strong in the lattice
gas and RVO2 models, but weak in the social force model.
This mixing dynamics can be seen more clearly from our
videos3. From the movies of the lattice gas and RVO2
simulations, we see that agents from the nearer zones get
pushed to the side once there is congestion at the exit. In
these two models, agents prefer to keep moving when it is
possible for them to do so. Agents in the social force model
behave differently: once the exit becomes congested, they
will become nearly stationary and wait for their turn to
go through the exit.

4.2 Passage density

The passage density heat map of agent locations aver-
aged over 100 simulations provides information about
the spatial-temporal trace of agents during their evacu-
ation. This is crucial when analyzing the spatial struc-
ture of congestions. In Figure 7a, we see a channel leading
straight through the exit. This channel acts as an at-
tractor, because once an agent gets onto this, it will be
forced statistically towards the exit (Pt,y = 1.00). Though
not as pronounced as for the lattice gas model, two left-
right symmetric channels also formed in the RVO2 model
(Fig. 7c). These two channels point roughly from the cen-
ters of mass of the left and right halves of the room to-
wards the exit. No such artificial channels can be seen
in the passage density map of the social force model
(Fig. 7b).

Comparing the three models, we also see that the
RVO2 model (Fig. 7c) has the most compact passage den-
sity, whereas the social force model (Fig. 7b) has the least
compact passage density. In particular, in the region just
in front of the exit, the RVO2 model gives rise to very
high passage density. This high passage density cannot be
attributed to agents stepping over a cell once or twice, as

1 http://www.youtube.com/watch?v=P64p3nlH_P4 and
http://www.youtube.com/watch?v=vJ0Nzi5Bykw

2 see our video
http://www.youtube.com/watch?v=3Ot7m959_yo

3 http://www.youtube.com/watch?v=qeoJotgEUxk (lattice
gas),
http://www.youtube.com/watch?v=uZpd5LODYZs (RVO2),
and http://www.youtube.com/watch?v=wEB6Ya0o_yw (social
force)
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Fig. 5. Evacuation time distributions for the (a) lattice gas, (b) social force, and (c) RVO2 models for N = 50,
100, 150, 200, 300, 500, 1000 agents. For each model and N , the distribution is built from 100 simulations.
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Fig. 6. Zoned evacuation time distributions for the (a) lattice gas, (b) social force, and (c) RVO2 models for N = 1000 agents
in six zones, with zone 1 closest to the exit and zone 6 furthest away (see Fig. 3). For each model, the distribution is averaged
over 100 simulations.

(a) (b) (c)

Fig. 7. Passage density maps of N = 1000 agents averaged over 100 simulations for the (a) lattice gas, (b) social force,
and (c) RVO2 models. In these color maps, the exit is located at the bottom.

in the lattice gas and social force models. In the RVO2
model, this high passage density is produced by repeated
visits to the same cell by individual agents that are always
moving.

4.3 Total distance traveled distribution
and inconvenience

To measure the difficulty (inconvenience) for an agent
to squeeze through the crowd during evacuation, we

measured the total distance traveled and as well as the
inconvenience (defined in Eq. (7)). As we can see in Fig-
ures 8b and 8c, the distributions of total distance traveled
are very similar for the social force and RVO2 models.
The lattice gas model, on the other hand, has very differ-
ent distributions of total distance traveled (Fig. 8a). This
is because space is continuous in the two former models,
but discrete in the lattice gas model.

However, when we compare the distributions of incon-
veniences in Figure 9, we find the lattice gas model is
more qualitatively similar to the RVO2 model, though
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Fig. 8. Distributions of total distance traveled for the (a) lattice gas, (b) social force, and (c) RVO2 models. For each model
and N , the distribution is averaged over 100 simulations.
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Fig. 9. Distributions of inconveniences for the (a) lattice gas, (b) social force, and (c) RVO2 models. For each model and N ,
the distribution is averaged over 100 simulations.
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Fig. 10. Flow rates at the exit as functions of time for the (a) lattice gas, (b) social force, and (c) RVO2 models. For each
model and N , the flow rate is averaged over 100 simulations.

the typical inconveniences in the lattice gas model are
larger than those in the RVO2 model. For different N ,
the distribution peaks around the same inconvenience for
both models. In contrast, the peak position of the incon-
venience distribution of the social force model depends
strongly on the number of agents in the simulation.

4.4 Evacuation rate

We also measured the flow rate of agents at the exit. As
shown in Figure 10a, the flow rate of the lattice gas model
saturates at around 11.8 persons per second due to the
finite sizes of the agents and the exit. The social force

model has the lowest flow rate of 2.2 people per second
(Fig. 10b), because agents slow down dramatically at the
end as a result of strong repulsive forces between agents.
From Figure 10c, we see the same peaks before and after
the congestion period for the RVO2 model, a consequence
of the liquid-like dynamics of RVO2 crowds.

In an attempt to compare simulation results with real
data we obtained a number of videos showing real-life
evacuations [49,50] during the Sichuan Earthquake on
May 12, 2008. We analysed two such videos4,5. Because

4 http://www.youtube.com/watch?v=-y38ebiAnQw
5 http://www.youtube.com/watch?v=e1yapP3z_L4
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Fig. 11. The flow rates for evacuation during the May 2008
Sichuan Earthquake: (top) through the check-out counters of
a Walmart supermarket in Chengdu, China4; and (bottom)
through the narrow exit of a classroom in an elementary school
in Sichuan, China5.

the geometry of the scene and the viewing angles are
not known, we could only measure the flow rates on a
second-by-second basis from these two videos (Fig. 11), for
comparison against what we measured in our simulations.
Unlike the computational study, where we could average
over 100 simulations to get smoothly varying flow rates,
the flow rates measured from the videos are noisy. How-
ever, sensible comparisons can still be made. In the video4,
the crowd is shown to evacuate through the check-out
counters of a Walmart supermarket. The flow rate was
high, but there was no congestion, because of the wide
exit. This flow rate cannot be compared against our sim-
ulations of evacuation through a narrow exit.

In the video5, students were evacuating their classroom
through a narrow door. From the video, we see that the
width of the door allows no more than three school chil-
dren to exit simultaneously. Therefore, the exit dimensions
seem to correspond to the exit dimensions used in our sim-
ulations. From Figure 11, we see that the average flow rate
in the congestion phase is about 3 persons per second.
This is far below the congestion flow rate in the lattice
gas model, and very close to the congestion flow rate of
the social force model. Based on this observable, we find
that the social force model agrees best with the real data.
This small test also tells us that the three models can be
distinguished through their congestion flow rates, if other
observables could not be measured.

4.5 DISTATIS comparison

Finally, we make use of the DISTATIS method explained
in Section 3.2 to compare the three models with all six dif-
ferent measurements. Figure 12 shows the different mea-
surements of the three models projected onto their first
two principal components. The barycenters for the three
models are also shown. From Figure 12 we see that based
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Fig. 12. The DISTATIS analysis of the three models with
N = 1000 agents. In this plot, τ is the quality of compromise,
and λ is the eigenvalue.

on the total distance traveled (green), the social force and
RVO2 models have similar distributions, which are both
very different from that of the lattice gas model. On the
other hand, the lattice gas and RVO2 models have simi-
lar distributions that are significantly different that of the
social force model.

More importantly, we find the clustering of some ob-
servables: evacuation time, passage density, and flow rate
all tells us that the lattice gas model is similar to the RVO2
model, and different from the social force model. We also
find the inconvenience and zoned evacuation time provide
some indication that the three models are qualitatively
different. In fact, the DISTATIS method indicates that
the zoned evacuation time is one key metric that clearly
distinguishes the three models. Therefore, any real world
experiments should attempt to measure this. This observ-
able maximally discriminates between the three models
and therefore it is reasonable to expect it will also dis-
criminate between real-world data and the models.

5 Conclusion

To conclude, we simulated emergency evacuation from a
rectangular room with a single narrow exit using three
models: (1) lattice gas, (2) social force, and (3) RVO2,
with different starting number of agents in the room. From
these simulations, we measured six observables: (1) evacu-
ation time, (2) zoned evacuation time, (3) passage density,
(4) total distance traveled, (5) inconvenience and (6) flow
rate. Besides qualitative comparison of the various dis-
tributions obtained, we also compared the three models
quantitatively using the DISTATIS method. Comparing
the evacuation time, passage density, and flow rate dis-
tributions, we find that the lattice gas and RVO2 models
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are similar, both of which are very different from the so-
cial force model. On the other hand, if we compare the
distribution of total distance traveled, the social force and
RVO2 models are more similar to each other, and very
different from the lattice gas model. We compared the
simulated congestion flow rates of the three models to con-
gestion flow rates of school children evacuating from their
classroom during the May 2008 Sichuan Earthquake, and
find based on this observable that the social force model
agrees best with the egress data. Finally, from an analysis
of the DISTATIS we have identified the zoned evacuation
time as the one observable metric that can best discrimi-
nate between these models, and also between models and
real-world data.
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