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Abstract. In this study, we explore the ratchet effect in graphene with artificial, triangular scatterers
from a theoretical standpoint. It is demonstrated that the skew scattering of carriers by such coherently
oriented defects results in the ratchet effect in graphene, i.e., in a direct current under the action of an
oscillating electric field. Scattering on various types of defects exhibiting threefold symmetry is considered
in this paper: scattering on a cluster in the shape of a solid triangle in the classical and quantum mechanical
limits, and scattering on three-point defects placed at the corners of a triangle. The DC current is calculated
for a classical range of oscillating field frequencies.

1 Introduction

The physics of graphene has been most captivating topic
in condensed-matter physics over the past decade. Partic-
ularly promising are the effects of nonlinear transport in
graphene [1–3], including the photogalvanic effect, a sub-
class of the ratchet effect [4–7] in which the appearance of
a directed particle flux is driven by an external stochastic
or periodic field. The flux is nonlinear with respect to the
magnitude of the driving force.

The studies of ratchet effects are important both
for the fundamental physics, because such effects are
deeply related with the issues of second law of ther-
modynamics [8], and for the future device applications,
such as ratchet effect-based terahertz radiation detec-
tors. The possibility of manufacturing of such devices
was demonstrated for semiconductor two-dimensional
structures [9,10].

This paper develops the consistent analytical and nu-
merical theory of the ratchet effect in graphene. We con-
sider the new type of symmetry breaking that leads to the
ratchet effect in graphene, namely the threefold symmetry.
This paper microscopically describes the skew scattering
on triangular defects employing the second order quantum
mechanical perturbation theory for deriving the numeri-
cal estimations of the ratchet current magnitude for the
electric fields of classical magnitudes and graphene sam-
ples with reachable parameters. The obtained numerical
values can be directly compared with future experimental
data.

We start with phenomenological analysis of the effect
based on the symmetry considerations because it allows

a e-mail: kon@mail.ioffe.ru

one to predict the polarization and intensity dependence
of the photocurrent without knowing the microscopic pro-
cess of the current formation. Due to the considered shape
of defects the system obeys C3v symmetry, and ratchet
current in such system is given by [9]:

(
jx

jy

)
= χ

(
ExE

∗
y + EyE

∗
x

|Ex|2 − |Ey |2

)
. (1)

It can be observed that the transverse ratchet effect is
allowed by the considered symmetry. These relations are
also applicable for describing the photogalvanic effect with
normal incidence of radiation in the system with C3v sym-
metry. Figure 1 shows the geometry of the problem.

In this work, we employ the Boltzmann kinetic equa-
tion similarly to reference [6] studying scattering on
semidisks and reference [7] investigating ratchet effects in
graphene with a noncentrosymmetric lateral potential. We
provide calculations of the asymmetric part of scattering
rate for several types of trigonal scatterers.

First we study a point defect trimer (PD trimer) that
can be described as a cluster of three equivalent point de-
fects placed in the corners of equilateral triangle. Scatter-
ing on the PD trimer is treated here in the quantum me-
chanical approach (see Sect. 2). Second we consider cluster
in the shape of a solid triangle, that can be imagined as
a quantum well obeying C3v symmetry. It can be realized
in practice as a cluster consisting of multiple vacancies,
adatoms or functional groups. Also triangular potential
can be induced by the influence of relief of the substrate
the graphene sheet is placed on. We study this case us-
ing both quantum mechanical and classical rules of elastic
scattering in Sections 3 and 4, respectively. Sections 2–4
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Fig. 1. Geometry of the problem. One of the triangle’s sides
is parallel to the X axis. The initial electron state, denoted as
k, has a polar angle θ. The final state, k′, has a polar angle
θ′ = θ + φ. The inset shows a graphene sheet with an array of
coherently oriented triangular clusters.

start with mathematical description of scattering poten-
tials of considered defects.

Finally, we implement the obtained asymmetric scat-
tering rate in the Boltzmann kinetic equation and pro-
vide values of the ratchet current for structures that
can be manufactured. Here we derive the coefficient χ in
relation (1).

Most part of previous works considering the skew scat-
tering on clusters simulated the behavior of the Langevin
particles [11–15]. Some other works studied the electron
transport through the threefold quantum billiards [16,17]
and quantum-dot arrays [18].

Current rectification can also be observed in the sys-
tems without internal spatial asymmetry, which is demon-
strated in reference [19] for graphene placed in oscillating
intersecting electric fields of frequencies ω and 2ω.

The following assumptions about the electronic struc-
ture of graphene are made. We study a degenerate gas of
carriers and neglect the effects of trigonal warping [20],
taking the linear isotropic dispersion ε(k) to be equal to
�vFk. Finally, we do not consider the effects of spin swap
or intervalley scattering.

Asymmetric scattering

The origin of the ratchet effect is the breakdown of cen-
tral inversion symmetry, which at the microscopic level
can give rise to skew scattering (or asymmetric scatter-
ing) [21]. The most general property of the elastic scatter-
ing rate W (k,k′) between the electronic states k and k′
is the time invariance of the scattering rate:

W (k,k′) = W (−k′,−k).

For a potential with central inversion symmetry, the more
stringent condition is

W (k,k′) = W (−k,−k′) = W (k′,k),

known as detailed balance. A scattering potential lacking
central inversion symmetry leads to the breakdown of the
detailed balance and, as a consequence, to the possibility
of various intriguing phenomena.

Other origins of the photogalvanic effect and the
anomalous Hall effect [22–24] are side jumps and the ef-
fects of the Berry phase [25].

The standard collision integral can be divided into
symmetric and antisymmetric parts as follows:

St(f(k′)) =
∫

BZ

dkW symm(k,k′) [f(k) − f(k′)]

+
∫

BZ

dkW as(k,k′) [f(k) + f(k′)] ,

where the symmetric and the asymmetric scattering rates
are defined as

W symm(k,k′) = 0.5 [W (k,k′) +W (k′,k)] ≈W (k,k′),

W as(k,k′) = 0.5 [W (k,k′) −W (k′,k)] �W (k,k′).

The designation BZ implies integration over the entire
Brillouin zone. This designation is formal and main con-
tribution comes from only electronic states near the Fermi
level. Only these states are involved in the integration.

We can explicitly use the elasticity of scattering and
rewrite the normalized asymmetric scattering rate using
the absolute value of the electron wave vector k, polar
angle θ of the initial electron wave vector k and the scat-
tering angle φ, which obeys the relation θ′ = θ + φ. Fig-
ure 1 shows the scattering geometry. Therefore, in spite of
W as(k,k′), one may write W as(k, θ, φ).

The symmetric part of the collision integral can be
treated in the relaxation time approximation, and the
asymmetric part provides a basis for introducing the op-
erator of asymmetric scattering:

Âf(k, θ) =
1

4π2

∫
kdk

∫ +π

−π

dφδ(k − k′)

×W as(k, θ, φ) (f(k, θ) + f(k, θ + φ)) . (2)

Fermi’s golden rule, which yields the transition rate for
two-dimensional Dirac fermions, reads as follows:

W (k,k′)dk′ =
2π
�
|F |2 S

�vF
δ(k − k′)dk′.

In the first approximation of perturbation theory, the scat-
tering amplitude F directly matches the scattering poten-
tial matrix element: F = V (k,k′). It can be immediately
observed that the detailed balance is always met in this
approximation. Taking into account the second-order ap-
proximation for the scattering amplitude F = F (1) +F (2),
where

F (2)(k,k′) =
S

4π2

∫
BZ

dq
V (k′ − q)V (q − k)
�vFk − �vF q + iδ

,
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will lead to the following expression for the asymmetric
part of the scattering rate

W as(k,k′)dk′ = dk′ S2

2π�3v2
F

δ(k − k′)

×�
[
V (k,k′)

∫
BZ

dk′′V (k′,k′′)V (k′′,k)δ (k − k′′)
]
.

(3)

2 Asymmetric scattering for the PD trimers

The wave function of graphene for the electrons near the
K and K ′ points of Brillouin zone reads as follows:

ψk(r) =
(

1
e±iθ

)
1√
2S

exp(ikr), (4)

where S indicates the surface of the sample and θ is
the electron wave vector polar angle. The potential of
three-point defects arranged at the corners of a triangle
is given by:

V (r) = V0Sd

∑
i=1,2,3

δ(r/L− r̃i), (5)

where L defines the size of the trimer, r̃1 = (0, 1),
r̃2 = (

√
3/2,−1/2), r̃3 = (−√

3/2,−1/2), and V0Sd is the
strength of each point defect, namely the product of its
depth V0 and surface Sd. In this paper tildes indicate nor-
malized and dimensionless values.

The introduced potential of the PD trimer leads to the
following matrix element:

V (k,k′) =
V0Sd

S
Ṽ
(
k̃, k̃′

)
, (6)

where

Ṽ (k̃, k̃′) =
1
2

(
1 + e±i(θk−θk′)

) ∑
i=1,2,3

exp (iq̃r̃i) , (7)

and q̃ = k̃ − k̃′ is the normalized transferred wave vector
(k̃ = kL, k̃′ = k′L).

The unique nature of graphene, namely that it is com-
posed of two crystal sublattices, underlies the presence of
the multiplier 1

2 (1 + e±i(θk−θk′)) in equation (7), which
is absent for electrons in quantum wells. The asymmetric
part of the scattering rate (3) after this substitution takes
the form

W as(k,k′)dk′ = dk′ V 3
0 S

3
d

2π�3v2
FSL

δ(k − k′)W̃ as
(
k̃, k̃′

)
,

(8)
where

W̃ as(k̃, k̃′) = �
[
Ṽ
(
k̃, k̃′

)
×
∫
k̃′′dk̃′′dθ′′Ṽ (k̃′, k̃′′)Ṽ (k̃′′, k̃)δ

(
k̃ − k̃′′

)]
(9)

can be analytically calculated for the case of the PD
trimer. The general form of the asymmetric part of scat-
tering rate for an arbitrary k̃ provided in the Appendix.
For k̃ � 1, the asymmetric part of the scattering rate
W̃ as(k̃, θ, φ) can be written as

W̃ as(k̃, θ, φ) =
3πk̃3

2
(1 + cos(φ))

4
cos
(

3φ
2

+ 3θ
)

×
(

3 sin
(
φ

2

)
+ 2 sin

(
3φ
2

))
. (10)

The factor 1
4 (1 + cos(φ)) stems from the spinor structure

of the electronic wave function of electrons in graphene.

3 Asymmetric scattering for large
triangular defect

3.1 Introducing the potential

For large defects with kL� 1 the scattering cross section
itself and the asymmetry of scattering as well are substan-
tial only for scattering angles φ� 1, and their magnitudes
tend to 0 for large angles, which allows to show that the
spinor structure of the graphene wave function containing
the multiplier e±iθ does not affect the skew scattering fea-
tures of large clusters. Therefore, in this section we assume
that ψk(r) = 1√

S
exp(ikr).

It is natural to introduce the potential of the scatterer
in the following form:

V (r) = V0Ṽ (r/L), (11)

where V0 is the binding energy of the impurities of which
the triangular cluster is composed, for instance adatoms,
functional groups, vacancies or the relief of the substrate.
L is the characteristic size of the cluster, and Ṽ (r̃) gives
the shape of the potential of the cluster, which differs from
zero for |r̃| on the order of 1. The matrix element is con-
sequently written as

V (k,k′) =
V0L

2

S
Ṽ (q̃), (12)

where
Ṽ (q̃) =

∫
dr̃Ṽ (r̃) exp(i q̃r̃). (13)

The real and the imaginary parts of the scatterer’s poten-
tial fourier image are proposed as Gaussian functions mod-
ulated by angle, which in polar coordinates, q̃ = (q̃, α),
can be expressed as follows:

�[V (q̃)] = Ṽ0 exp(−4q̃2(2 − cos(6α))), (14a)

�[V (q̃)] = Ṽ0 exp(−2q̃2(2 + cos(6α))) sin(3α). (14b)

Assuming Ṽ0 = 0.026 provides the correct normalization
of the potential

∫
Ṽ (r̃)dr̃ = 1. Figure 2 shows that the
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Fig. 2. The scattering potential Ṽ (r̃) in real space calculated
based on the Fourier image (14). The torn shape of the equipo-
tential curves is due to the Monte Carlo integration method.

potential Ṽ (r̃) in real space, built based on its Fourier
image (14), describes the triangulaer potential with good
accuracy. Integral calculation is performed via the Monte
Carlo method, which minimizes the artifacts of the nu-
merical integrating procedure. The meaningful and repro-
ducible result of the numerical integration confirms the
acceptable accuracy of the calculations.

Thus, the asymmetric part of the scattering rate
reads as

W as(k,k′)dk′ = dk′ V 3
0 L

5

2π�3v2
FS

δ(k − k′)W̃ as(k̃, k̃′), (15)

where we numerically calculate the normalized dimension-
less asymmetry of scattering W̃ as(k̃, k̃′), defined straight-
forwardly as in equation (9). This integral is also treated
by the Monte Carlo method. The Dirac delta function is
taken as the narrow Lorentz peak: δ(x) = a

π (a2 + x2)−1,
where a� 1.

3.2 Asymmetric scattering for large clusters

The asymmetric part of the scattering rate obeys the fol-
lowing symmetry relation: W̃ as(θ, φ) = W̃ as(θ + 2π

3 , φ).
For small scattering angles φ, an additional symmetry rule
is met: W̃ as(θ, φ) = −W̃ as(θ,−φ).

The following approximation of the scattering asym-
metry can be written for all values of the normalized elec-
tron wave vector k̃:

W̃ as(k̃, θ, φ) =

⎧⎪⎪⎨
⎪⎪⎩
A cos(3θ)(4.25 − k̃|φ|)sign(φ),

|φ| < 4.25/k̃;

0, |φ| > 4.25/k̃,

(16)
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θ = π/6
θ = π/9

θ = π/18

θ = 0

2 4 6-2-4-6
kφ
~

Was(k,θ,φ)
~ ~

Was(k,0,φ)
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Was(k,π/18,φ)
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Was(k,π/9,φ)
~ ~
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~ ~

Fig. 3. Angular dependence of the asymmetric part of the
scattering rate the large clusters. Dots represent the calculated
dependence of the normalized asymmetry scattering W̃ as on
the transferred wave vector k̃φ for different values of θ and
k̃ = 4. Black indicates θ = 0, red indicates θ = π/18, green
indicates θ = π/9 and blue indicates θ = π/6. The solid lines
with a similar color scheme are plots of (16) for corresponding
values of θ.

where A = 0.000058, which leads to the follow-
ing integral relations:

∫ +π

−π
W̃ as(k̃, θ, φ)dφ = 0 and∫ +π

−π
W̃ as(k̃, θ, φ)φdφ ≈ 9.3 × 10−6 cos 3θ. The transferred

wave vector has a value kφ.
The asymmetric scattering operator reads as

Â(f(k′)) =
1

4π2

∫
BZ

dkW as(k,k′) [f(k) + f(k′)] . (17)

After combiningW as from equations (15) and (16), substi-
tuting f(θ)+f(θ+φ) ≈ 2f(θ)+φ∂f(θ)/∂θ and integrating
over k, one obtains

Â(f(k)) =
V 3

0 kL
5

8π3�3v2
FS

×
∫ +π

−π

dφW̃ as(θ − φ, φ)
∂f(θ)
∂θ

φ. (18)

The integral over φ that contains f(θ) vanishes and there-
fore, only the angular derivative of the distribution func-
tion φ∂f/∂θ gives rise to the effect of asymmetric scatter-
ing. Integrating over φ one yields

Â(f(k, θ)) = 9.3 × 10−7 V 3
0 kL

5

8π3�3v2
FS

cos(3θ)
∂f(k, θ)
∂θ

. (19)

4 Asymmetric scattering in classic limit

In this section we will describe the cross section for the
elastic scattering of a point particle on a hard triangle
oriented as shown on Figure 1. The elementary geometry
leads to the following form of the rate of the scattering
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cross section for the direction θ of the initial electron wave
vector k lying in the range between 0 and 2

3π:

W (θ, φ) =
vFL

S

δ(k − k′)
k

G(θ, φ), (20)

where

G(θ, φ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ(φ− (2
3π − 2θ)) sin(π/3 − θ)

+δ(φ+ 2θ) sin(θ), 0 < θ < 2
3π;

δ(φ+ 2θ) sin(θ), 2
3π < θ < π/2;

δ(φ− (2π − 2θ)) sin(θ), π/2 < θ < 4
3π.

(21)
L in the equation above represents the length of one side
of the triangle. The dependence of the cross section on
the angle θ has a period 2

3π, and consequently, it can be
extended to the entire range of angle φ from 0 to 2π. The
asymmetric part of the scattering rate W̃ as(θ, φ) can be
written as W̃ as(θ, φ) = G(θ, φ)−G(θ+φ,−φ), and finally

W as(θ, φ) =
vFL

S

δ(k − k′)
k

W̃ as(θ, φ). (22)

5 Results and discussion

5.1 Kinetics

In the case of weak asymmetry when W as(k,k′) �
W symm(k,k′) considered in this paper, the ratchet ef-
fect will appear in the correction to the electron distri-
bution function linear to the asymmetric scattering rate
and quadratic to the electric field magnitude, which will
require three iterations of the Boltzmann kinetic equation
solution. Moreover the two contributions of the same mag-
nitude and similar structure will give raise to the effect.
We write the electric field as E(t) = Eeiωt + C.C. The
methods for obtaining the iterative solution to the Boltz-
mann kinetic equation for nonlinear transport in graphene
are well developed [1,6,7], and we generally adhere to
them. The first contribution to the correction for the car-
rier distribution function is written as

f I = τ
eE∗

�

∂

∂k
τ

1 − iωτ
Â

τ

1 − iωτ

eE
�

∂

∂k
f (0)(k, θ), (23)

and the second one is written as

f II = τÂτ
eE∗

�

∂

∂k
τ

1 − iωτ

eE
�

∂

∂k
f (0)(k, θ). (24)

f (0) in the equations above is the Fermi-Dirac equilib-
rium distribution function, and τ is the relaxation time for
the corresponding angular harmonic of the electron distri-
bution function correction. The ratchet current reads as
follows:(

jx

jy

)
=
evF

π2

∫
kdkdθ

(
cos(θ)

sin(θ)

)(
f I + f II

)
. (25)

We assume that the symmetric part of the scattering rate
is defined by the intrinsic mechanisms of the sample and
take into account the two common mechanisms of the in-
trinsic conductivity of graphene: scattering on Coulomb
defects and on short-range defects. The difference will ap-
pear in the dependencies of the ratchet current on the
electric field frequency.

Scattering on Coulomb impurities leads to the follow-
ing dependencies of the relaxation times of the first (pro-
portional to sin θ and to cos θ) and of the second (propor-
tional to sin 2θ and to cos 2θ) angular harmonics of the
distribution function correction on the absolute value of
the electron wave vector [26]:

τ1(k) = τtr
k

kF
, τ2(k) = 3τ1. (26)

For short-range impurities, the dependencies of the relax-
ation times on the wave vector are given by

τ1(k) = τtr
kF

k
, τ2(k) = τ1/2. (27)

τtr in the equations above is the transport relaxation time
of a given graphene sample.

5.2 Analytical expressions for the ratchet current

Table 1 shows the analytical expressions for the ratchet
current for the different types of triangular scatterers con-
sidered above. The designation

τn,ω =
τn(k)

1 − iωτn(k)
,

appears in the column corresponding to the arbitrary in-
trinsic scattering mechanism. Therefore, the real part of
the given coefficients χ is assumed to derive the physical
value of the ratchet current. τ ′ implies differentiation by
the magnitude of the electron wave vector and n repre-
sents the concentration of trigonal clusters.

Substituting the relaxation times for scattering on
the Coulomb defects (26) and on the short-range de-
fects (27) yields the relations in the corresponding columns
of Table 1.

In the results presented in Table 1, we do not explicitly
use the concentration of carriers ns = p2

F /(π�
2), where the

Fermi momentum pF = �kF . If one uses the carrier con-
centration, the Planck constant will vanish in the solution
for the classical scattering, and the solution will remain a
cubic function for quantum mechanical scattering.

In contrast with reference [7], which studied ratchet
effects in noncentrosymmetric 1D periodic patterns on
graphene and reference [6], which studied skew scatter-
ing on semidisks (both studied systems with C2v sym-
metry), C3v symmetry allows the photocurrent to appear
only as a response to the polarized light, and no current is
driven by the unpolarized radiation [9]. In references [6,7],
the X and Y components of the ratchet current are the
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Table 2. Numerical estimations of the ratchet current. The parameters of the sample with conductivity defined by scattering
on the Coulomb impurities are: εF = 0.24 eV, τtr ≈ 6.3 × 10−14 s. τc is the transport relaxation time for scattering on the
triangular clusters with given parameters only. The concentration of triangular scatterers n is assumed to be 1 μm−1. The
values of the ratchet current j are presented in the last two columns per the square of the electric field magnitude and per the
intensity of radiation.

Scatterer Scatterer parameters kF L τc, s j, pA cmV−2 j, pA cmW−1

PD trimer V0Sd = 0.1 eV nm2, L = 1 nm 0.4 3.3 × 10−8 3.4 × 10−6 1.4 × 10−3

Large cluster V0 = 0.1 eV, L = 10 nm 4 1.5 × 10−10 2.6 × 10−6 1.0 × 10−3

Classic scattering L = 100 nm 40 10−11 28 1.1 × 104

superposition of both the polarized and unpolarized ra-
diation contributions. A similar situation occurs for for
the photon drag current in graphene and the edge pho-
tocurrents [1,27]. Therefore, the contribution from skew
scattering on the trigonal clusters can be separated from
other contributions by the polarization dependence. So in
graphene with trigonal clusters, the Y and X components
of the ratchet current indicate the degree of linear polar-
ization in the X and Y axes and the axes rotated by 45◦,
respectively.

The frequency dependencies of the ratchet currents
are generally similar to those reported in references [6,7],
namely rational functions of (ωτtr)2. For all types scat-
terers considered for the frequencies of electric field oscil-
lation much less than the reciprocal transport relaxation
time ratchet current tends to constant and for large fre-
quencies ratchet current tends to zero in following way:

j ∝ 1
ω2τ2

tr

.

In reference [7], the transverse ratchet effect, i.e., the sit-
uation in which the ratchet current and driving force are
perpendicular, is impossible for graphene with Coulomb
defects. This paper shows that skew scattering on trigo-
nal clusters makes the transverse ratchet effect possible
for all actual mechanisms of intrinsic conductivity.

If the potential is weak with respect to the Fermi en-
ergy, the Born approximation is acceptable, one should
use the quantum mechanical theory for large clusters. In
the case of barrier that is much higher than the Fermi
energy the classic limit is met.

The value of k̃ = kL, where L is the length of one
side of a triangular cluster, defines the quantum mechan-
ical regime of electron scattering [28]. For clusters that
are large compared with the Fermi wavelength (k̃ � 1),
the first Born approximation does not reproduce the side
lobes of the scattering cross-section, and therefore, the
applicability of the approximation should be ascertained.
However the first Born approximation describes forward
scattering as being tolerable.

The developed approach appears to be unsuitable for
treating deep quantum wells, but for V0 � εF , one can
expect acceptable results. It is important to note that
threefold quantum dots exhibit intriguing properties of
localized electronic states [29,30].

The suggested ratchet effect can be detected in the
following experiments. The first experiment implies de-
tection of photogalvanic current due to irradiation of

the graphene sheet by linearly polarized electromagnetic
waves. The highest radiation frequency that do not sup-
press the amplitude of the effect is determined by the
transport relaxation time of carriers in graphene sample
τtr and calculation for the adopted parameters of the sam-
ple yields 16THz. The second experiment is detection of
the transverse ratchet effect in the Hall effect geometry,
and moreover the AC to DC conversion is expected to be
observed in this case.

5.3 Numerical estimations of the ratchet
current values

In this section, we provide numerical estimations of the
obtained ratchet current for the actual and reachable
parameters of the sample. All obtained expressions for
the ratchet current contain both the relaxation time and
Fermi level in the sample. From these two quantities, the
electrical conductivity of the sample can be directly de-
rived as follows:

σ =
e2vF kF

π�
τ1(kF ).

As mentioned above, the carrier concentration ns is re-
lated to the Fermi wave vector via kF =

√
πns (see also

the very useful Tab. 2 in the review [31]).
To numerically estimate the Fermi vector and relax-

ation time, the parameters of the sample described in
the classic paper studying graphene conductivity [32] were
adopted. The authors provide an explanation of the con-
ductivity of the studied sample by scattering on Coulomb
defects. Figure 5 from reference [32] allows for the estima-
tion τtr ≈ 6.3 × 10−14 s for kF ≈ 3.96 × 106 cm−1, which
corresponds to εF ≈ 0.24 eV and λF ∼ 15 nm. The mean
free path τtrvF is consequently 63 nm.

Finally, it is important to estimate the magnitude of
the actual electric fields. A radiation intensity 1 W/cm2

corresponds to an electric field strength of approxi-
mately 20 V/cm, and peak intensity of modern THz
sources reaches several MW/cm2 in pulse regime [33,34].

Table 2 presents the numerical estimations of the
ratchet current in a graphene sample with the parame-
ters adopted from [32].

All results are presented for a steady external electric
field (ω = 0) and the actual depth and size of the scat-
terers (Tab. 2). The concentration of trigonal clusters is
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assumed to be n = 1 μm−1. It is trivial to extend the re-
sults to arbitrary electric field and scatterers parameters.

In addition, we have ascertained that the contribu-
tion to the transport relaxation time τc from the trigo-
nal clusters is much smaller than the contribution from
the intrinsic defects. Quantum mechanical consideration
of scattering on the short-range defects gives

τc ∼ �
2vF

V 2
0 S

2
dnkF

,

where V0 is the defect depth and Sd provides the estimate
of the defect area. For large clusters, Sd ≈ L2. The extra
multiplier (kFL)2 will appear for the large clusters due to
the strong forward scattering. In the classical, considera-
tion one estimates τc ∼ (nLvF )−1.

It can be observed that the ratchet current for the
small PD trimer is comparable to the current for a large
cluster with a similar potential depth, although the po-
tential strength of the PD trimer, which appears to be
cubed, is 102 smaller. The first reason whys this figure
is obtained is that the large cluster can transfer only a
small wave vector on the order of L−1 to electrons, which
suppresses both backscattering and skew scattering. The
second reason is that the shape of the solid triangle is
much more similar to that of the isotropic disk scatterer
than that of the PD trimer.

Scattering in the classic regime exhibits a stronger ef-
fect than scattering in the QM regime with a weak poten-
tial for triangles of the same size.

The values of the transport relaxation times τc on all
types of threefold clusters are much smaller than the char-
acteristic intrinsic transport relaxation times of graphene
samples. Therefore, the developed theory will remain ap-
plicable for concentrations several orders of magnitude
greater than those of the PD trimers. An increase in the
large triangular cluster concentration is nearly impossible
due to geometrical constraints.

The current technologies used for manufactur-
ing [35,36] and treating graphene via laser [37,38] and
chemical [39] patterning and ion etching [40,41] provide
the greatest possibilities for creating ratchet devices with
the proposed geometrical structure. Another way to ob-
tain threefold scatterers in graphene is to grow epitax-
ial graphene films on substrates with threefold islands or
to place graphene sheets on substrates patterned with
triangles. The obtained values of the ratchet photocur-
rents demonstrate the potential of creating graphene-
based polarization sensitive detectors of THz and mi-
crowave radiation.
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Eidelman and A.Ya. Vul for their support; and to O.I. Utiosov
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by the Dynasty Foundation, by Ioffe Physical-Technical Insti-
tute project “Physical-chemical principles of new functional-
ized materials based on carbon nanostructures” and by N.M.
Dybkov, a kind of Maecenas for me.

Appendix A: Asymmetric scattering
on the PD trimer for arbitrary electron
wave vector

Substituting the PD trimer matrix element (7) into the
general formula for the asymmetric scattering rate (3)
leads integration over the wave vector absolute value and
to the angular integral. Integrating over k̃′′ and using the
energy conservation law δ(k̃ − k̃′) will yield k̃ = k̃′ = k̃′′.
The unclosed angular integral will contain the exponent of
sine and cosine functions of the angles between the wave
vectors k̃, k̃′, k̃′′ and the PD radius vectors r̃1, r̃2, r̃3. The
form of the integral is the sum of the expressions that
match the left-hand side of the equation
∫ π

−π

exp
(
ik̃A cos(θ′′) + ik̃B cos(θ′′) + ik̃C

)
dθ′′

= 2π exp
(
ik̃C

)
J0

(
k̃
√
A2 +B2

)
, (A.1)

and of the equation

∫ π

−π

exp
(
ik̃A cos (θ′′) + ik̃B cos (θ′′) + ik̃C

)
× exp (±iθ′′) dθ′′ = −2iπ exp

(
ik̃C

)

×
⎛
⎝J1

(
−k̃
√
A2 +B2

)
±

2 sin
(
k̃
√
A2 +B2

)
k̃
√
A2 +B2

⎞
⎠, (A.2)

where the parameters A and B depend only on the polar
angles r̃1, r̃2, r̃3, and the coefficient C contains the sine
and cosine function of θ and θ′ = θ + φ.

Further simplifications lead to expression (10) for a
dimensionless asymmetric scattering rate.
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