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Abstract. Recent experiments on triblock copolymer melts suggest that polydispersity effects are dramat-
ically enhanced when polydisperse blocks are constrained by both ends to the internal interfaces of an
ordered morphology. To quantify the relevance of architecture, we compare BAB triblock and AB diblock
copolymer melts with polydisperse A blocks and monodisperse B blocks, using self-consistent field the-
ory (SCFT). We do, in fact, find an enhanced shift in the order-order transitions (OOTs) of the triblock
copolymer system in good agreement with the experiments, which we attribute to a reduction of entropy
in the A-rich domains due to the absence of chain ends. There is also a slightly enhanced dilation of the
domains, but not nearly to the same degree as reported by the experiments. Unlike in the experiments, our
calculations indicate that the polydispersity-induced shifts in the order-disorder transition (ODT) should
be quantitatively similar for both diblocks and triblocks. It is possible that some of the pronounced effects
observed in the experiments have more to do with the detailed shape of the molecular-weight distribution
than the triblock architecture.

1 Introduction

Block copolymers continue to receive considerable atten-
tion because of numerous applications relating to their
ability to form ordered morphologies with nano-sized do-
mains. However, development is often impeded by the
high cost of production and the limited range of potential
chemistries due to a perceived need for anionic polymer-
ization, because of a long-held opinion that the formation
of well-ordered morphologies requires low levels of poly-
dispersity [1,2]. Fortunately, experimentalists have begun
to realize that this is not necessarily the case [1–3], imply-
ing that it may be acceptable to synthesize block copoly-
mers via less costly methods. This has, in turn, inspired
efforts to better understand how the phase behavior of
block copolymer melts is affected by elevated degrees of
polydispersity. The model system for most of the experi-
mental work [4–8] has been AB diblock copolymers with
polydisperse A blocks and monodisperse B blocks.

The experiments have found that polydispersity in-
creases the domain size, D, and shifts the order-order tran-
sitions (OOTs) towards larger volume fractions, fA, of the
polydisperse domains. These effects are well accounted for
by theory [9–11] and are easily understood. The behavior
originates from the fact that polydispersity reduces the
entropic stretching energy required to increase the thick-
ness of a polymer brush [12]. Figure 1 provides the simple
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Fig. 1. Monodisperse brushes can be transformed into polydis-
perse brushes by snipping fragments off some polymer chains
and joining them to other chains. This increases the average
brush thickness without any additional stretching of the chains.

intuitive explanation; monodisperse brushes can be trans-
formed in polydisperse brushes by cutting the ends off
some chains and adding them to other chains, which in-
creases the average brush thickness without any additional
stretching of the chains. In an ordered block-copolymer
morphology, this reduction in the cost of stretching poly-
disperse (A-rich) domains leads to the dilation of the do-
mains. The monodisperse (B-rich) domains are also able
to reduce their stretching energy by curving the internal
interfaces towards the polydisperse domains, which causes
the shift in the OOTs.

Polydispersity also alters the location of the order-
disorder transition, (χN)ODT, where N refers to the
number-averaged polymerization index and χ is the usual
Flory-Huggins interaction parameter. Evidently, there are
two competing effects [13, 14]. On one hand, the pres-
ence of the higher molecular-weight molecules helps in-
duce microphase separation, which pushes (χN)ODT to
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smaller values. On the other hand, polydispersity relieves
the high levels of packing frustration in disordered mor-
phologies, which increases (χN)ODT. The net result is that
(χN)ODT decreases when the polydisperse blocks form the
minority component (i.e., fA � 0.5), and it increases when
the polydisperse blocks are the majority component (i.e.,
fA � 0.5) [6]. Mean-field theory misses the second effect
because it treats the disordered phase as a homogeneous
mixture of A and B segments rather than a fluctuating
morphology of irregularly shaped domains, and thus it in-
correctly predicts a decrease in (χN)ODT at all composi-
tions [9,11,15]. As one might expect, the correct behavior
is captured by Monte Carlo simulations [13,14].

Now that the diblock system is reasonably well under-
stood, researchers are beginning to explore more elaborate
architectures. Interestingly, studies from the group of Ma-
hanthappa [16–18] have reported unexpectedly large poly-
dispersity effects for melts of BAB triblock copolymer in
comparison to AB diblock copolymers, when the A block is
polydisperse. For middle-block polydispersities approach-
ing PDIA = 2, non-lamellar phases appear at symmetric
compositions, domain sizes increase by a factor of around
two, and (χN)ODT decreases by a factor of about two.
This seems to contradict the principle that symmetric tri-
blocks should behave equivalently to the homologous di-
blocks formed by snipping all the triblocks in half [19].
Here we use the numerical self-consistent field theory
(SCFT) of Helfand [20] to examine the degree to which
architecture is responsible for these pronounced effects
by comparing melts of polydisperse triblock copolymer
with their homologous diblock counterpart. We also exam-
ine the strong-segregation theory (SST) of Semenov [21],
which provides analytical predictions corresponding to the
exact χN → ∞ limit of SCFT [22].

2 Results

Self-consistent field theory is a well-documented
method [23, 24], and so we forgo a detailed descrip-
tion of the calculation. It is sufficient to say that we
perform the SCFT on the standard Gaussian chain
model [25] in the canonical ensemble using the usual
Schulz-Zimm distribution [26,27],

p(σ) =
kkσk−1 exp(−kσ)

Γ (k)
, (1)

where σ = NA/(NA)n is the size of an A block relative
to the number-averaged size and the polydisperse index is
PDIA = (k + 1)/k. The numerics are performed with the
efficient algorithm introduced earlier [10], where the dif-
fusion equation is solved using the spectral method [28]
and integrations over the molecular-weight distribution
are evaluated using Gaussian quadrature [15]. We use up
to M = 2000 symmetrized basis functions and quadra-
tures of order ng = 300 so as to ensure that numerical
inaccuracies are negligible on the scale of our plots. The
self-consistent field equations are generally solved using

the Broyden method when M � 100 and Anderson mix-
ing when M � 100, which keeps the computational cost
of the calculation relatively modest [29].

We start by comparing the phase diagrams of AB
diblock and BAB triblock copolymer melts plotted in
terms of A-block volume fraction, fA, and segregation,
χN , with the polydispersity index of the A block set
to PDIA = 1.5. As expected, the order-order transitions
(OOTs) are shifted towards larger fA compared to the
monodisperse case examined earlier (see ref. [19]), and
indeed the effect is more significant for the triblocks as
suggested by the experiments [18]. As mentioned in the
Introduction, SCFT does not predict the correct shift in
the order-disorder transition (ODT) because it fails to ac-
count for packing frustration in the disordered phase. Nev-
ertheless, fig. 2 illustrates that the tendency of the higher
molecular-weight molecules to microphase separate, which
acts to decrease (χN)ODT relative to that of the monodis-
perse melts (dashed curves), is quantitatively similar for
both the diblock and triblock architectures.

There are also some other intriguing features in the
phase diagrams, apart from the shifts in the phase bound-
aries. As discovered earlier for diblocks [11], the usual bcc
spherical (S) phase gives way to the close-packed spheri-
cal (Scp) phase; however, this is much more pronounced
in the triblock system. What was not realized in the ear-
lier study was that the spherical micelles reorder into an
A15 arrangement once their coronas become thin relative
to their cores (on left side of the diagrams), which has
incidentally been predicted [19, 30, 31] and observed [32]
in other systems where the spherical phase is shifted to-
wards high minority-component compositions. It is also
intriguing that on the right side of both phase diagrams
the stability regions of the complex Fddd (O70) phase have
expanded considerably relative to those of monodisperse
melts [19].

To better quantify the enhanced shift of the OOTs
for triblocks relative to diblocks, fig. 3 plots both of their
phase diagrams as a function of composition, fA, and poly-
dispersity, PDIA, at a fixed segregation of χN = 30. As
we can see, the triblock OOTs are already shifted rela-
tive to the diblock ones even for monodisperse melts; the
center of the lamellar region occurs at fA = 0.518 for
the triblocks as compared to fA = 0.5 for the diblocks.
Nevertheless, polydispersity increases this difference. By
PDIA = 2.0, the center of the lamellar region occurs at
fA = 0.665 for triblocks as compared to fA = 0.613 for
diblocks, resulting in a difference of ΔfA = 0.052 which
is three times the ΔfA = 0.018 for monodisperse melts.
In fact, this SCFT prediction for the polydisperse tri-
block copolymer melts agrees perfectly with the location,
fA = (0.57 + 0.75)/2 = 0.66, reported by the experiments
of Widin et al. [18]. Furthermore, the complex-phase win-
dow occurs near fA ≈ 0.5 for the polydisperse triblocks
in agreement with their earlier experiments [16], whereas
the polydisperse diblocks still form a lamellar phase at
symmetric compositions.

Interestingly, the perforated-lamellar (PL) phase be-
comes stable for triblock melts on the right side of the
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Fig. 2. Phase diagrams for melts of (a) AB diblock and (b)
BAB triblock copolymer with polydisperse A blocks (PDIA =
1.5) and monodisperse B blocks (PDIB = 1.0) plotted as a
function of A-block composition, fA, and segregation, χN ,
where N is the number-averaged polymerization index of a
complete diblock or half a triblock. The ordered phases are
lamellar (L), cylindrical (C), bcc spherical (S), closed-packed
spherical (Scp), A15 spherical (SA15), gyroid (G), and Fddd
(O70). Two-phase coexistence regions are ignored, and the
mean-field critical points are marked by solid dots. The dashed
curves denote the ODTs for monodisperse melts.

phase diagram (fig. 3b), where the thinner monodisperse
lamellae develop perforations through which the thicker
polydisperse domains are connected. The PL phase is
nearly stable in the same region of the diblock phase di-
agram. Incidentally, experiments by Listak et al. [7] did
observe PL in polydisperse diblocks, but oddly on the
other side of the phase diagram at a surprisingly low
composition of fA = 0.35 considering their estimates of
PDIA = 1.8 and PDIB = 1.1; they did, however, report
that their samples could have been affected by residual
macroinitiator and that their polydisperse blocks were not
well represented by the Schulz-Zimm distribution. One
other notable feature of our triblock phase diagram is
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Fig. 3. Similar diagrams to those of fig. 2, but plotted as a
function of A-block composition, fA, and A-block polydisper-
sity, PDIA, at a fixed segregation of χN = 30. Note that an
additional ordered phase of perforated-lamellae (PL) becomes
stable in the triblock system.

that the spherical phase vanishes on the right side at
PDIA > 1.96 for some unknown reason; consequently the
cylinder phase extends to the ODT.

In addition to the pronounced shift in the OOTs, the
experiments on polydisperse triblocks [17,18] also reported
a dramatic expansion in domain size. Our SCFT calcu-
lations do generally predict larger domains for triblocks
than for the corresponding diblocks, but this has little to
do with polydispersity. Figure 4 compares the dilation of
the lamellar period, D, due to polydispersity, PDIA, for
compositionally symmetric triblocks (solid curves) and di-
blocks (dashed curves). Although polydispersity tends to
have a greater effect on the triblock copolymer melts, the
difference is very slight. In reality, most of the difference in
domain size is already present for monodisperse melts [33],
as illustrated in the inset where the lamellar period, D0,
is plotted for PDIA = 1.0.

According to strong-segregation theory (SST), the
lamellar period of both monodisperse systems is given
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Fig. 4. Lamellar period, D, relative to that of a monodisperse
melt, D0, plotted as a function of polydispersity, PDIA, at
symmetric composition, fA = 0.5, and two different degrees
of segregation, χN . The inset shows D0 as a function of χN .
Solid and dash curves denote results for triblock and diblock
melts, respectively, while the dotted curves denote the χN →
∞ limits from eqs. (2) and (3).

by [21]

D0 = 2
(

8χN

3π4

)1/6

aN1/2 , (2)

and indeed this prediction (dotted curve) agrees reason-
ably well with our SCFT calculations in the inset of fig. 4.
Likewise, SST predicts a dilation [10]

D

D0
=

1

[fASA + 1 − fA]1/3
, (3)

with an identical dependence on the molecular-weight dis-
tribution

SA =
∫ ∞

0

[
1 −

∫ σ

0

pα(σ′)dσ′
]3

dσ , (4)

for both architectures. Although this SST prediction (dot-
ted curve) is not a particularly good approximation of our
SCFT results in fig. 4, it does corroborate our conclusion
that polydispersity has a quantitatively similar effect on
the domain sizes of both the diblock and triblock copoly-
mer melts.

Mahanthappa et al. [17,18] suggested that a contribut-
ing factor to the enhanced polydispersity effects in their
BAB triblock copolymer melts could be the pull-out of
short A blocks from their domains, swelling the B-rich re-
gions and producing a shift in the OOTs consistent with
the addition of B-type homopolymer [34,35]. Figure 5 ex-
amines the swelling in the lamellar phase as a function
of polydispersity by plotting the volume of the B-rich do-
main, VB, relative to the expected volume based on the
composition, (1 − fA)V . Note that we define the internal
interfaces of the morphology as the surfaces of equal A and
B concentration (i.e., φA(r) = φB(r)). Although there is
some swelling of the B-rich domains, it is too small to
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Fig. 5. Volume of the B-rich domain, VB, relative to the to-
tal volume occupied by B segments, (1 − fA)V , plotted as a
function of polydispersity, PDIA, at symmetric composition,
fA = 0.5, and two different degrees of segregation, χN . The
inset shows the critical size, σcr, for chain pull-out as a function
of χN . Solid and dash curves denote results for triblock and
diblock melts, respectively, while the dotted curves denote the
χN → ∞ limits from eqs. (5) and (6).

have a significant effect. In any case, the swelling cannot
account for the dramatic behavior observed in the triblock
experiments, given that it is just as large, or in fact slightly
larger, for diblock copolymer melts.

SST again accounts for the similar behavior of the di-
block and triblock copolymer melts. The dotted curve in
fig. 5 plots the relative swelling of the B-rich domains

VB

(1 − fA)V
= 1 +

fA

1 − fA

∫ σcr

0

σp(σ)dσ , (5)

assuming that all A blocks below a critical size, σcr, are
pulled into the B-rich domains. In a previous SST-based
calculation for the lamellar phase of a diblock copolymer
melt [11], the critical size was derived to be

σcr =
1

χNfA

[
2aN1/2

D

√
χN

6
+

π2(1 − fA)D2

32a2N

]
, (6)

which is plotted in the inset of fig. 5 for PDIA = 1.0. Note
that σcr has a small dependence on PDIA, because of the
dilation in D. The expression in eq. (6) is obtained by
balancing the enthalpic cost of pulling an A block into a
B-rich domain with the entropic gain of relaxing the B
block to which it is attached. Although the A block of a
BAB triblock is twice as large, it is attached to two B
blocks and thus the same expression (6) also applies to
triblocks. In SCFT, σcr can be defined as the relative size
of an A block below which its segments are more likely
to be found in a B-rich domain rather than an A-rich
domain [10]. Using this definition, the SCFT predictions
of σcr for triblocks (solid curves) and diblocks (dashed
curves) are virtually identical and in excellent agreement
with eq. (6). Since the enhanced polydispersity effects in
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triblock copolymer melts cannot be attributed to the pull-
out of short A blocks from their domains, they must in-
stead be due to an entropic difference in the A-rich do-
mains regarding how polydispersity affects the packing of
middle blocks versus end blocks.

3 Discussion

Melts of symmetric triblock copolymer should behave
quantitatively similar to melts of diblock copolymer, pro-
vided that the polymers are sufficiently flexible that they
can be modeled as Gaussian chains. This follows from the
strong-segregation theory (SST) of Semenov [21], which
says that a block constrained by both ends to an inter-
nal interface is unaffected by snipping it in half. The im-
plication is that complex block-copolymer architectures
are governed by their constituent units [19, 36–38], and
in particular symmetric BAB triblocks of polymerization
2N behave the same as AB diblocks of polymerization
N [39]. This equivalence is exact in the strong-segregation
limit, which implies that the OOTs in figs. 2a and b must
become identical as χN → ∞. It is also why the SST
predictions in eqs. (2), (3) and (6) are the same for both
architectures.

Of course, there will be some differences in behavior
at finite degrees of segregation, as evident by previous
SCFT calculations [33] on monodisperse triblock and di-
block copolymer melts. Indeed, the finite-segregation cor-
rections to SST [22,40] will differ for the two architectures.
The most obvious difference will involve the free-energy
correction per chain due to the entropy of free ends, which
takes the form

ΔFends

nkBT
= − ln(L) + k1 + k2L

−2/3 + k3L
−4/3 + · · · , (7)

where L is the domain thickness. For extraordinarily large
χN , the logarithmic term, which favors large L, domi-
nates. However, for realistic values of χN , the negative
powers of L become more important. As it happens, their
coefficients (i.e., k2 and k3) are generally negative and
therefore they favor small L. It follows that triblocks
should have slightly larger domains than diblocks, since
there are no chain ends in their middle-block domains [41].
The relative corrections to the different morphologies is
a more subtle affair, but the asymmetry in the monodis-
erse triblock phase diagram [33] implies that end segments
are favored on the outside of the interfacial curvature. We
suggest that these chain-end effects, which presumably ac-
count for the small differences in the domain sizes and
OOTs between monodisperse triblocks and diblocks, are
simply enhanced by polydispersity.

As eluded to earlier, the position of the lamellar re-
gion, 0.57 � fA � 0.75, in the experiment of Widin et
al. [18] agrees remarkably well with the interval, 0.555
≤ fA ≤ 0.775, predicted by SCFT for PDIA = 2.0 in
fig. 3b. However, this neglects the fact that the experi-
mental system had a small polydispersity of PDIB ≈ 1.2

in the end blocks as well as a significant degree of con-
formational asymmetry, aA/aB = 1.3 [42]. Based on the
typical shifts observed in fig. 3, we would expect this
level of B-block polydispersity to move the lamellar re-
gion to the left by ΔfA ≈ −0.05. As it happens, pre-
vious SCFT calculations [33] on monodisperse triblocks
investigated this particular level of conformational asym-
metry and found that it shifts the lamellar region to the
right by ΔfA ≈ 0.05 at χN = 30. Thus these two cor-
rections to the OOTs should approximately cancel, pre-
serving the good agreement between SCFT and exper-
iment. On the other hand, both B-block polydispersity
and conformational asymmetry contribute to a dilation of
the domains, which would naturally bring the SCFT pre-
dictions into better agreement with experiments. In fact,
according to previous calculations on diblocks [10], the
dilation is enhanced considerably when there is polydis-
persity in both domains. Still, this is not enough, even
when combined with the conformational asymmetry, to
account for the dramatic dilations reported by the exper-
iments [16–18].

In some instances, particularly near phase bound-
aries, a melt can lower its free energy by fractionating its
molecular-weight distribution into two coexisting phases.
A previous SCFT calculation [11] for diblock copoly-
mer melts showed that with sufficient polydispersity, the
complex-phase windows are gradually replaced by L+C
coexistence. However, this macrophase separation is a far
slower process than microphase separation. The later only
requires a local rearrangement of A and B blocks, whereas
the former requires the macroscopic transport of the more
symmetric molecules to a lamellar region while the more
asymmetric molecules migrate to a cylindrical region. Our
present calculation simply assumes that the time scale of
the experiment is insufficient for macrophase separation to
occur, which is a sensible expectation for high molecular-
weight systems [43]. Indeed the experiments in refs. [16,18]
revealed no evidence of two-phase coexistence. There
would still be a tendency for the complex phases (i.e., G,
O70 and PL) to macrophase separate into C+L, and this is
likely why the experiments observed disordered bicontin-
uous morphologies in the complex-phase channels. Natu-
rally, our assumption breaks down for the faster dynamics
of small molecules, and indeed L+C coexistence has been
reported for lower molecular-weight systems [17,44]. Nev-
ertheless, the L+C coexistence should simply replace the
complex-phase channel without altering its location, and
so our phase diagrams would still be relevant.

It is well understood that polydispersity relieves the
packing frustration caused by difficult-to-fill regions in the
morphology, which occur when there are large variations
in domain thickness [25,45]. In the polydisperse domains,
these regions can be filled by the higher molecular-weight
blocks of the distribution, and in the monodisperse do-
mains, they can be filled by the polymers that pull-out
from the interface. Given that cylindrical and spherical mi-
celles self-assemble into regular arrays so as reduce packing
frustration in the matrix domain, it follows that polydis-
persity should reduce the long-range order in these phases.
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Indeed, the experiments in refs. [17,18] only observed dis-
ordered cylinders on the large-fA side of the phase dia-
gram, where the matrix is polydisperse.

This suppression of ordering by a reduction in pack-
ing frustration presumably shifts the ODT to larger χN ,
counteracting the downward shift in fig. 2 caused by the
enhanced tendency of the higher molecular-weight chains
to order. Near the ODT, even the disordered phase mi-
crophase separates, but into irregularly shaped domains
with high levels of packing frustration. Because its pack-
ing frustration is much greater than that of an ordered
phase, the relative stability of the disordered phase will
be enhanced by polydispersity [13, 14]. SCFT misses this
effect because it treats the disordered phase as a homoge-
neous mixture of A and B segments, in which there is no
packing frustration. In any case, this packing-related effect
should apply equally to triblocks as it does to diblocks, and
thus it is difficult to understand why experiments [16, 18]
find such low values of (χN)ODT for polydisperse triblock
copolymer melts.

Although SCFT nicely accounts for the shift in the
OOTs reported by Mahanthappa and coworkers, the dra-
matic increase in their domain sizes and stability of the
ordered phases remains a mystery. Perhaps these effects
are not entirely due to the triblock architecture. Indeed
there has been a couple reported cases [46, 47] where ex-
periments observed unexpectedly large dilations in poly-
disperse diblock copolymer melts. It was suggested that
the dilation occurs because the penalty for swollen do-
mains is reduced by the occurrence of chain pullout. This
claim was supported by a SST-based calculation [46], and
indeed our SCFT calculation predicts the same albeit to
a much lesser extent. Nevertheless, this effect alone is in-
sufficient to explain how the morphology selects a single
dilated domain size for the lamellar phase, rather than a
wide spectrum of domain sizes resulting in a disordered
phase.

One issue yet to be considered is the detailed shape
of the molecular-weight distribution. Like most calcula-
tions, we use the Schulz-Zimm distribution because of
its simple functional form, eq. (1), that bridges between
the most-probable distribution (k = 1) and monodisperse
blocks (k → ∞). However, the polydispersity distribution
of some experiments may have a very different shape (e.g.,
skewness [7]) to that of the Schulz-Zimm distribution, and
this could be important at large PDI. In fact, a previ-
ous SCFT calculation [48] for a more realistic distribu-
tion with equivalent PDI predicted a significant enhance-
ment in domain size without causing much of an effect
on the position of the phase boundaries between lamel-
lae and cylinders (and thus presumably on the location of
the complex phase channels). In that case, the more real-
istic distribution had a higher fraction of molecules with
σ < σcr, which presumably caused a greater swelling of
the monodisperse domains. This is just a single example,
but it does demonstrate that characterizing a molecular-
weight distribution by PDI alone is not entirely sufficient
when the polydispersity is large.

4 Summary

This study has addressed the issue of whether or not block
copolymer melts are affected differently by polydispersity
in middle blocks versus end blocks. Using self-consistent
field theory (SCFT), we compared BAB triblocks and AB
diblocks with number-averaged polymerizations of 2N and
N , respectively, where the A blocks are polydisperse and
the B blocks are monodisperse. In both cases, polydisper-
sity causes a dilation of the domains, shifts the order-order
transitions (OOTs) to higher fA, and moves the order-
disorder transition (ODT) to lower χN . Note that SCFT
omits a packing-related effect [13,14] that counteracts the
downward shift in (χN)ODT, which is presumably similar
for both architectures. Polydispersity also causes spher-
ical micelles to reorder into an A15 arrangement (SA15)
on the small-fA side of the phase diagram, and it helps
stabilize the complex Fddd (O70) and perforated-lamellar
(PL) phases on the large-fA side.

Strong-stretching theory (SST) predicts quantitatively
identical behavior for the triblock and diblock systems,
but recent experiments [16–18] from the group of Mahan-
thappa suggest that the polydispersity effects are dramat-
ically enhanced in the triblock system. Our SCFT calcu-
lations do, in fact, predict larger shifts in the OOTs for
triblocks than diblocks, which we attribute to the absence
of chain ends and their associated entropy in the middle-
block domains. While SCFT does predict a slightly en-
hanced dilation of the domains for triblocks, it is nowhere
near the amount suggested by the experiments. Further-
more, our calculations indicate that polydispersity should
have similar effects on the ODTs of both systems. Thus it
appears that the enhanced effects observed by the experi-
ments are not entirely due to the triblock architecture. Ex-
periments on matched triblock and diblock systems could
help establish whether or not this is the case.

It should be noted that our calculations are specific
to the Schulz-Zimm molecular-weight distribution [26,27],
which may not be a good representation of the experimen-
tal distribution. It is conceivable that the dramatic dila-
tion of the domains and the enhanced stability of ordered
phases may have more to do with the detailed shape of
the distribution than the triblock architecture. This high-
lights the need for further SCFT calculations to investi-
gate how the behavior of polydisperse block copolymer
melts is affected by the skewness of the molecular-weight
distribution.

We are grateful to Mahesh Mahanthappa for useful discussions
and to the EPSRC for funding this work.
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