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Abstract. The implementation of a method for the exact evaluation of the volume and surface area of
cavities and free volumes in polydisperse sphere packings is described. The generalization of an algorithm
for Voronoi tessellation by Tanemura et al. is presented, employing the radical plane construction, as
a part of the method. We employ this method to calculate the equation of state for monodisperse and
polydisperse hard-sphere fluids, crystals, and for the metastable amorphous branch up to random close
packing or jamming densities. We compute the distribution of free volumes, and compare with previous
results employing a heuristic definition of free volume. We show the efficacy of the method for analyzing
protein structure, by computing various quantities such as the distribution of sizes of buried cavities and
pockets, the scaling of solvent accessible area to the corresponding occupied volume, the composition of
residues lining cavities, etc.

1 Introduction

The geometry of sphere packings is of interest in under-
standing diverse physical and chemical phenomena. From
the understanding of possible crystal structures, to the
structure of fluids, granular material, to the structure of
biomolecules, especially proteins, the analysis of the geom-
etry of sphere packings finds wide ranging applications.
A specific problem of interest is the characterization of
empty or “void” space in sphere packings, and the inter-
face between empty and occupied space; examples arise
in the study of the thermodynamics of hard-sphere fluids
and solids [1], modeling flow through porous media [2] and
random heterogeneous materials [3], and the characteriza-
tion of the solvent accessible surface of proteins [4–6], and
of voids and pockets [7].

A number of methods has been developed over the
years to calculate the occupied volume and the surface
area of packings of spheres, especially in the context of
analyzing protein structure [4–16], but methods that take
account also of the connectivity of void space, important,
e.g. in detecting buried cavities in proteins, are relatively
rare [12–15]. In [15], an algorithm was presented for the
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detection of disconnected components of void space (or
cavities), and for the exact computation of their volumes
and surface areas (subject only to machine precision, un-
like, e.g., estimates based on Monte Carlo sampling), for
monodisperse and polydisperse packings of overlapping
spheres. The method is based on the Voronoi construc-
tion, for polydisperse spheres, its generalization in the
form of the radical plane construction, which tessellates
space into polyhedra (Voronoi cells) consisting of points
that are closest to a given sphere than any other (while the
distance in question is the distance from the sphere center
in the case of monodisperse spheres, for the radical plane
construction, it is the tangent distance to the sphere; see
below for details). The vertices of the Voronoi cells are
equidistant from four spheres for arbitrary sphere pack-
ings, whose centres define Delaunay tetrahedra or sim-
plices. The algorithm identifies subsets of Delaunay tetra-
hedra that contain the void space corresponding to indi-
vidual cavities, and calculates their volumes and surface
areas by further dividing individual Delaunay simplices
into sub-simplices such that one needs only to calculate
the intersection volume of a sphere with the corresponding
sub-simplex. In [16], this method was extended to calcu-
late the free volumes of individual spheres, defined as the
volume swept by the centre of the sphere without overlap-
ping with any of the other spheres, which are kept fixed in
their positions. Employing this extension, the free-volume



Page 2 of 13 Eur. Phys. J. E (2013) 36: 5

distributions for the monodisperse hard-sphere fluid, and
the equation of state from the free volumes, were evalu-
ated.

In the present work, we consider the analysis of void
space in polydisperse sphere packings, with applications
to free volume in hard-sphere systems, and the analysis
of cavities, pockets, and other structural features in pro-
teins. To this end, we first present a generalization of the
algorithm for the Voronoi construction due to Tanemura
et al. [17], to perform the radical plane construction [18]
for polydisperse sphere packings.

The paper is organized as follows: In sect. 2, we present
the details of the methods used, including the new algo-
rithm for the radical plane construction. Section 3 con-
tains a discussion of and results concerning free volumes
and surface areas for monodisperse and polydisperse hard-
sphere systems. Section 4 contains a discussion and results
concerning the analysis of protein structures. Section 5
contains a summary of results and conclusions.

2 Methods

In this section, we present the details of the algorithm
used to calculate the volume and surface areas of cavities
in a packing of spheres of unequal size, and define the
terminology used in the rest of the paper. As described in
detail in [15], the algorithm (here described for packings
of spheres of unequal size) consists in the following steps:

1) Radical plane construction: For a set of spheres i of
radius ri, the radical plane construction divides the
space into non-overlapping polyhedra V Pi such that
for any point x within V Pi the tangent distance to
sphere i is smaller than to any other sphere j, or

d2(x,xi) − r2
i < d2(x,xj) − r2

j , j �= i, (1)

where xi is the location of the sphere centre i, and d2

are the squared Euclidean distances between x and xi.
For any pair of spheres, the condition of equal tan-
gent distance defines a plane (illustrated in fig. 1),
and V Pi are convex polyhedra defined by the inter-
section of such planes separating pairs of spheres that
are termed as geometric neighbors.
The usual Voronoi construction (wherein V Pi are
termed Voronoi polyhedra) is a special case that arises
when the radii of all the spheres are treated as equal.
We will refer to the polyhedra V Pi as Voronoi poly-
hedra also in the polydisperse case. In the general
case (i.e., barring sphere configurations possessing spe-
cial symmetries as in crystalline ordered structures),
the vertices of Voronoi polyhedra have equal tangent
distance from four (in three dimensions) surrounding
spheres. (Where no confusion arises, we use “distance”
as a short hand for tangent distance, and phrases such
as “x is closer to i than j” are used as a shorthand for
“the tangent distance from x to the sphere i is smaller
than the tangent distance to sphere j”.) Tetrahedra
with these sphere centres as vertices are termed De-
launay tetrahedra (DT) or simplices and are dual to

Fig. 1. Illustration of the radical plane construction in two di-
mensions. (a) The dividing surface defined by the condition of
equal tangent distance is a plane, for select cases. For overlap-
ping spheres, the dividing plane passes through the circle of in-
tersection which is obvious from the expression for the tangent
distance, when applied to a point on the circle of intersection,
and for spheres in contact, through the point of contact. (b)
The radical plane construction with the application of periodic
boundary conditions or replicated images. The spheres in the
central box are replicated in all directions. In this case, the
Delaunay simplices cover the system volume. (c) The radical
plane construction for a union of spheres with open boundary
conditions. In this case, the union of Delaunay simplices defines
the convex hull. We have marked an example each of a pocket
and a cavity in this illustration (see discussion in sect. 4).

the Voronoi vertices. Similarly, the edges of Voronoi
polyhedra are equidistant from triplets of spheres, and
are dual to faces of DTs, and as already mentioned,
faces of Voronoi polyhedra are equidistant from pairs
of spheres, and are dual to edges of the DTs. Both
the Voronoi and Delaunay polyhedra divide space into
non-overlapping regions, or tessellate space. We de-
scribe below the generalization of the algorithm for
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the Voronoi construction due to Tanemura et al. [17]
to perform the radical plane construction.

2) Identification of cavities: After obtaining Voronoi
polyhedra, the subset of Voronoi vertices that are “in
the void” are identified by the condition that their
squared tangent distance is greater than zero. Simi-
larly, Voronoi edges that are in the void are identified
by the condition that the point along the edge that is
closest to a Delaunay face has a squared tangent dis-
tance greater than zero. Such a point is either the point
of intersection of the edge with the face (when the two
Voronoi vertices that the edge terminates at are on
either side of the face) or the closer of the Voronoi ver-
tices in cases where both the Voronoi vertices lie on the
same side of the face. Having identified such vertices
and edges, one identifies subsets of vertices that are in
the void that are connected by edges in the void. As
described in [19,20], each set of such connected vertices
corresponds to a cavity.

3) Identification of Delaunay tetrahedra enclosing cavi-
ties: The set of Delaunay tetrahedra that are dual to
the vertices that define a given cavity fully enclose the
cavity. Thus, the cavity volume and surface area are
obtained by calculating the void space that is present
in the union of such Delaunay tetrahedra, which are
considered one at a time.

4) Calculation of cavity volume and surface area con-
tained within each Delaunay tetrahedron: In order to
calculate the void space contained in a Delaunay tetra-
hedron, one must consider the complement of the inter-
section of the DT with the union of the spheres defin-
ing the Delaunay tetrahedron. Rather than consider
such an intersection volume, a procedure is adopted
where each Delaunay simplex is divided into 24 sub-
simplices, such that each subsimplex has as its vertices
(a) a sphere centre (total of 4), (b) the midpoint of a
Delaunay edge (three per sphere), (c) the intersection
point of a Voronoi edge with the plane of a Delau-
nay face (two per sphere per Delaunay edge), and (d)
the Voronoi vertex. Within each such subsimplex, it is
sufficient to consider the intersection of the subsimplex
with the sphere whose centre defines one of its vertices.
The intersection volume, and the surface area of the
sphere contained within the subsimplex can be calcu-
lated exactly [15]. Adding up the contributions from
individual subsimplices of each Delaunay tetrahedron
relevant for a given cavity yield the volume and surface
area of individual cavities.

In considering the hard-sphere system, one analyzes
the geometric problem defined by unions of “exclusion
spheres” whose radius equals the sum of radii of the
spheres present in the system, and a new sphere that may
be inserted into the system. The free volume of a given
sphere then corresponds to the volume of a cavity contain-
ing the coordinates of the sphere centre, that is obtained
by removing the sphere in question from the collection of
exclusion spheres whose radii is defined using the radius
of the removed sphere. The geometric problem to consider

therefore is that of calculating the volume and surface area
of a cavity that is generated by the removal of one of the
spheres.

The extension of the above procedure to evaluate the
free volumes, described for equal sized spheres in [16], car-
ries over straightforwardly for the polydisperse case, with
the generalization of the two theorems proved in [16] to
the polydisperse case. These generalizations are stated and
proved below.

We end this summary by noting that if one employs
periodic boundary conditions, as done in simulations of
the hard-sphere system that we consider later, the Delau-
nay tetrahedra cover the space (i.e. the sum of the vol-
ume of all the Delaunay tetrahedra equals the volume of
the system that is subjected to periodic boundary condi-
tions), whereas if one considers a union of spheres subject
to open boundary conditions, as the case of proteins that
we consider later, the union of Delaunay tetrahedra define
a convex polyhedron termed the convex hull. In order to
evaluate the external surface area in the latter case (as we
need to in order to compute the solvent accessible surface
area for proteins), we find it convenient to apply periodic
boundary conditions in this case as well, with a suitably
chosen but arbitrary containing volume. With this proce-
dure, the external surface can be easily calculated as the
surface area of the cavity that lies outside the union of
spheres. These cases are illustrated in fig. 1.

2.1 Generalized algorithm for Voronoi construction

The generalization of the Voronoi tessellation algorithm
by Tanemura et al. [17] for the radical plane is described
below. As mentioned earlier, the Voronoi construction, ob-
tained by the procedure of Tanemura et al. can be viewed
as the radical plane construction (defined by eq. (1) above)
for equal sized spheres. There are, however, situations
peculiar to the radical plane construction which are not
encountered in the usual Voronoi construction. While in
the Voronoi construction the bisector plane between two
points is always situated between the two points, the cen-
tre of a sphere may, in the radical plane construction, lie
in the half-space of the other sphere (the easiest way to vi-
sualize this is to note that the radical plane of intersecting
spheres is the plane containing the circle of intersection.
Depending on the radii of and separation between the two
spheres, the centres of both the spheres may lie on the
same side of the plane of intersection). Also, it is possible
that the generalized Voronoi cell of a given sphere, result-
ing from the radical plane construction, has zero volume.
This situation arises when (and only when) the sphere in
question is contained entirely within another. In such an
event, of course, one may as well discard such a sphere as it
in no way affects the analysis of the void space properties.
This is the procedure followed here. The results presented
below do not make any assumption about the location of
the radical plane with respect to the sphere centres (un-
less stated), although the accompanying illustrations are
drawn to indicate typical situations.
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Two modifications are made to the original algorithm:
i) In [17] one loops through each sphere in the system and
constructs Delaunay tetrahedra that enclose the sphere.
Such a procedure is redundant as each DT is encountered
four times, and further, construction of the first DT each
time is expensive. In the algorithm here, this redundancy
is eliminated. ii) The procedure for constructing the first
DT in [17] starts by identifying a sphere that is guaranteed
to be a geometric neighbor (i.e. one that shares a Voronoi
cell face with the central sphere). The generalization of
the procedure for polydisperse spheres is valid only under
restricted conditions. Hence, finding the first geometric
neighbor to a given sphere is more involved in the present
case.

The generalized Voronoi construction, based on Theo-
rems I-IV to be proved subsequently, involves the following
steps:

Step 1. Find if any sphere is completely contained
within any of the other spheres present. Remove all such
spheres from the configuration to be analyzed.

Step 2. Find a sphere i such that the centre of i lies
in its own (generalized) Voronoi cell. This means that for
all pairs of spheres i and k, the centre of i lies in the i
half-space, as defined by the radical plane for the pair i
and k. If such a sphere is not found (it appears extremely
unlikely that such a sphere cannot be found for any sphere
packing, but we have not attempted to prove that such is
the case in general), step 3(b) below is implemented.

Step 3. If a sphere is found whose centre lies in its own
Voronoi cell, a) find sphere j such that the CMSTD(i, j)
(CMSTD stands for the “common minimum squared tan-
gent distance” for the spheres indicated in brackets. STD
below stands for “squared tangent distance”) is smaller
than CMSTD(i, k)∀k �= i, j. Then, i, j are geometric
neighbors. Else, b) considering all pairs of spheres i, l,
find a pair i, j such that the STD to i, j of the point
P ≡ PCMSTD(i, j) (PCMSTD stands for the coordinates
of the point that has the CMSTD for the spheres indicated
in brackets) is smaller than its STD to k∀k �= i, j. Then,
i, j are geometric neighbors.

Step 4. With i, j from step 3, find sphere k such that
the CMSTD(i, j, k) is smaller than for any other triplet of
spheres. Then, i, j, k are geometric neighbors.

Step 5. With i, j, k from step 4, find sphere l such that
CMSTD(i, j, k, l) is smaller than for any other quadruplet
of spheres. Then, i, j, k, l form a DT. Add the DT found
to the list DTLIST as the first entry. Set the count of the
number of DTs found, γ, to 1.

For each DT encountered in steps 5, 6, define the count
of the number of adjacent DTs for a given DT, DTN. Set
DTN(1) = 0. For each face β of each DT α found in steps
5, 6, define the count l(α, β) which is equal to the number
of DTs sharing the face. Set l(1, β) = 1.

Step 6. In this step, looping through DTLIST, for each
DT α such that DTN(α) �= 4, and for each face β such
that l(α, β) < 2 (which means that the face is shared by
less than two DTs), construct a new DT that shares the
face β, as follows:

Let the face β be formed by spheres i, j, k. Define a
coordinate system such that i, j, k lie in the x, y plane, and
the fourth sphere l which completes the DT has a negative
z coordinate. Consider all spheres which lie in the positive
z half-space. Among these, find sphere m such that the
z coordinate of the PCMSTD of i, j, k,m has the lowest
value. Then, i, j, k,m form a DT.

When all DTs α in DTLIST have DTN(α) = 4, equiv-
alently all l(α, β) = 2, the tessellation is complete.

In the cases (e.g. proteins) where open boundary con-
ditions are used, some of the DTs α will have faces β that
form part of the convex hull, and which are identified by
the fact that l(α, β) = 1 at the termination of the tessel-
lation. In this case, the termination condition will be that
no new DTs are added after an iteration looping through
all the DTs that have l(α, β) = 1.

We present below proofs of four theorems (which are
generalizations of ones by Tanemura et al. [17]) which
must be valid for the above steps to result in a generalized
Voronoi tessellation for the given configuration of spheres.
While these results are necessary to justify the procedure
we describe, they are not necessary for understanding the
method, and may be skipped.

Theorem I. For a given sphere i such that its centre
lies inside its own Voronoi cell, the STD of its centre to
i is smaller than to any other sphere, if CMSTD(i, j) is
smaller than CMSTD(i, k) ∀k �= i, j, then i and j are
contiguous.

Proof. The premise is CMSTD(i, j) < CMSTD(i, k)
∀k �= i, j. For any two spheres, the set of points which have
the same squared tangent distance (STD) to both i and
j lie on a plane, the radical plane, that is perpendicular
to the line ij, joining spheres i and j. The intersection
point P of the radical plane and the line ij thus has the
“common minimum squared tangent distance” (CMSTD)
to spheres i and j. To prove that i, j are contiguous, it
is sufficient (but not necessary) to show that the STD to
point P from any other sphere k �= i, j is never smaller
than the CMSTD of i and j.

Assume that a sphere k exists such that the STD from
P to k is smaller than to i, j. This implies that if one
draws the radical plane between spheres i and k, P lies
in the k half-space (see illustration in fig. 2). Since the
centre of the sphere i and P lie in different half-spaces
defined by the radical plane of i, k, the line joining i
and P must intersect the radical plane of i, k. Let P ′ be
the point of intersection. Let Q be the PCMSTD(i, k).
By definition of the radical plane, i.e. iQP ′ is a right-
handed triangle and hence STD(i, Q) < STD(i, P ′). Fur-
ther, as P ′ lies between i and P , and hence the dis-
tance from i to P ′ is smaller than the distance from i to
P . Hence, STD(i, P ′) < STD(i, P ), and we have proved
STD(i, Q) < STD(i, P ′). This leads to the conclusion that
CMSTD(i, k) = STD(i, Q) < CMSTD(i, j) which contra-
dicts the premise. The theorem is hence proved.

Theorem II. Consider spheres i, j, k with i, j as in The-
orem I, such that CMSTD(i, j, k) (the set of points which
satisfy STD(i, j) = STD(i, k) = STD(j, k)) is smaller
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Fig. 2. Illustration for Theorem I. The line passing through
P , perpendicular to the line joining i, j represents the radical
plane i, j. The line passing through Q is the radical plane i, k.
P ′ is the intersecting point of the radical plane i, k and the line
joining i, j.
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RQ

l

Fig. 3. Illustration for Theorem II. The line passing through
the point R which intersects the line i, l represents the radical
plane i, l. The line perpendicular to the line i, j which passes
through the point P represents the radical plane i, j. The point
Q is in the l half-space.

than CMSTD(i, j, l) ∀l �= (i, j, k). Then, i, j, k are con-
tiguous.

Proof. The premise is CMSTD(i, j, k)<CMSTD(i, j, l)
∀l �= i, j, k. For any triplet, the set of points of equal STD
to all three spheres describes a line. In order for i, j, k
to be contiguous, it is sufficient (but not necessary) to
show that the STD of Q (Q ≡ PCMSTD(i, j, k)) to any
other sphere l is greater than the STD to i, j , k, i.e.
STD(l, Q) > CMSTD(i, j, k).

To show this, assume the contrary, i.e. that for some
l, STD(l, Q) < CMSTD(i, j, k). Define the plane contain-
ing the sphere centres i, j, k as the x, y plane, and the
direction i, j as the y axis (see illustration in fig. 3). The
radical plane of i, j then defines the x, z plane, and the
point Q is on the x axis as it is on the radical plane i, j.
Since we assume that the STD from Q to l is smaller than
CMSTD(i, j, k), if we construct the radical plane of i, l,
Q is in the l half-space. The point P ≡ PCMSTD(i, j) is

l

i
jk

n

R

S

Fig. 4. Illustration for Theorem IV. i, j and k are in a plane
perpendicular to the plane of the paper. R is a point on
CMSTD(i, j, k, m) which is also on the radical plane i, j. The
line passing through S which intersects the radical plane i, n
represents the radical plane i, n.

in the i half-space from Theorem I. Let R be the point
of intersection of the line PQ and the line defined by
the intersection of the radical plane of (i, l) with the
x, y plane. R clearly lies between P and Q as P and
Q belong to different half-spaces. By definition, R is a
point on the line of equal STD to i, j, l. Since the dis-
tance PR is less than the distance PQ, STD(i, R) <
STD(i, Q) = CMSTD(i, j, k). Since any point on the rad-
ical plane has the same STD, STD(j, R) = STD(i, R) =
STD(l, R). Hence R ≡ PCMSTD(i, j, l). This implies that
CMSTD(i, j, l) < CMSTD(i, j, k), which contradicts the
premise. Then the theorem is proved.

Theorem III. Consider spheres (i, j, k, l) with i, j, k as
in Theorems I and II, and CMSTD(i, j, k, l) being the
smallest of all qudruplets of spheres. Then i, j, k, l are con-
tiguous, i.e. they form a DT.

Let P ≡ PCMSTD(i, j), Q ≡ PCMSTD(i, j, k). Let
i, j, k define the x, y plane, and i, j define the y axis. Let
R ≡ PCMSTD(i, j, k, l).

Let us assume that there is some sphere m such that
STD(m,R) < CMSTD(i, j, k, l). Then, defining the rad-
ical plane of i,m, R belongs to the m half-space. From
Theorem II, Q belongs to the i half-space. Let S be the in-
tersection point of QR with the radical plane i,m. S must
lie between Q and R. Hence, STD(i, S) < STD(i, R). By
definition, S is the PCMSTD(i, j, k,m) which implies that
CMSTD(i, j, k,m) < CMSTD(i, j, k, l) which contradicts
the premise. The theorem is hence proved.

Theorem IV. Consider the DT i, j, k, l. Let i, j, k define
the x, y plane and let l be in the negative z half-space.
Consider m such that m is in the positive z half-space, and
PCMSTD(i, j, k,m) has the smaller z coordinates than the
PCMSTD for any i, j, k, n where n is in the positive z half-
space. Then i, j, k,m form a DT.

Proof. The premise is that z-coordinate of
PCMSTD(i, j, k,m) is smaller than PCMSTD(i, j, k, n).
Let R ≡ PCMSTD(i, j, k,m). R lies along the line of
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equal STD to i, j, k (see illustration in fig. 4), which
is parallel to the z axis. l is in the negative z and n
is in the positive z half-space. In order to form the
DT i, j, k, n, assume that there is a sphere n such that
STD(n,R) < CMSTD(i, j, k,m). Then, if one constructs
the radical plane of i, n, R lies in the n half-space.
Let S be the intersection of the radical plane of i, n
with the line of equal STD from i, j, k. By definition,
S ≡ PCMSTD(i, j, k, n). Since n is in the positive z
half-space, and the radical plane i, n is perpendicular to
the line joining i and n, from a point on the radical plane,
to reach a point in the n half-space with the same x, y
coordinates, one must increase z. Since S and R have the
same x, y coordinates, in order to reach R from S, one
must move along the direction of increasing z coordinate.
This implies that S has a lower z coordinate than R, if R
is in the n half-space which is false by assumption. Hence
the theorem is proved.

Finally, we state below the two theorems relevant to
the calculation of free volumes along with the correspond-
ing proofs.

Theorem F-I. If a sphere is removed from the system,
only the Voronoi polyhedra of its geometric neighbors must
be re-tessellated.

Proof. If a sphere is removed, points inside the Voronoi
cell of that sphere will become points contained in the
modified Voronoi cells of other spheres. We need to prove
that the spheres whose Voronoi cells are modified are the
geometric neighbors of the removed sphere.

Consider the Voronoi polyhedron Vj of an arbitrary
sphere j. Let the sphere i be removed. Let a point P be-
longing to the Voronoi polyhedron Vi of i, now belong
to the redefined Voronoi polyhedron V ′

j of j. In order for
a point P that does not belong to Vj to belong to the
redefined Voronoi polyhedron V ′

j , the removal of i must
modify the boundary of Vj . Since the boundaries of Vj

are formed by radical planes between j and one of its ge-
ometric neighbors, the removal of i can only modify the
boundaries of Vj if i is a geometric neighbor of j. Thus
the spheres whose Voronoi polyhedra change as a result
of the removal of a sphere are its geometric neighbors.

Theorem F-II. Pairs of geometric neighours of a sphere
that share a Voronoi face continue to do so after the sphere
is removed.

Proof. Consider spheres k and k′ which are geomet-
ric neighbours of sphere i that is removed, and share a
common Voronoi face. Any point on the common face has
a smaller tangent distance to spheres k and k′ than any
other atom in the system. Clearly the removal of any other
sphere (including i) will not change this fact, verifying the
theorem.

2.2 Tessellation with replicated images

As described above, for systems with open boundary con-
ditions, the Delaunay tessellation does not tessellate the
system volume (which may arbitrarily be defined so as to
enclose the union of spheres under consideration). There

are however circumstances where it is desirable to do so.
In order to address such cases, we adopt here the ap-
proach of replicating the spheres along ±x,±y,±z direc-
tions. Thus, for a system that is contained in a volume
of dimension Lx, Ly, Lz, with N spheres, we consider an
extended system of dimension (3Lx × 3Ly × 3Lz), con-
taining 27N spheres. However, tessellation is performed
only to obtain DTs that involve the original N spheres.
In addition to cases such as proteins, with open boundary
conditions, such a procedure is also useful in considering
systems where one employs periodic boundary conditions,
under circumstances where the heterogeneity of the sys-
tem is large enough that the minimum image convention
normally used along with periodic boundary conditions
fails to produce a meaningful tessellation.

However, with such a procedure, the computations in-
volved in step 6 of the algorithm, involving a search over
all spheres that are prospective geometric neighbors, can
become very expensive. This step involves the determina-
tion of the z coordinate of the PCMSTD for a triplet of
spheres along with a candidate fourth sphere. Even while
we consider only DTs that contain at least one of the origi-
nal N spheres as a vertex, it is useful to have a termination
condition for the search for a fourth sphere that shares an
unpaired DT face. Here we describe such a criterion. We
note that the stopping criterion defined here is applicable
in general, although motivated here by the procedure of
replicated images.

Let us consider a DT face i, j, k which defines the x, y
plane, with an existing fourth neighbor l in the negative
z half-space. In order to find an m, in the positive z half-
space such that i, j, k,m defines a DT, we compute the z
coordinate of the PCMSTD for i, j, k,m and iterate till we
find m with the lowest z. In doing so, we iterate through
a list of m which are ordered in increasing order of the
distance | �xm| ( �xm is the vector distance) from one of the
DT vertices, say i (see illustration in fig. 5(a)).

We denote the PCMSTD of the face i, j, k is by �c3 and
the normal to the face by n̂. The PCMSTD of i, j, k,m,
�c4, is then

�c4 = �c3 + zn̂, (2)

where z is the z coordinate of the PCMSTD of i, j, k,m
(see fig. 5 for illustration). Using the condition of equal
tangent distance ((�xi − �c4)2 −R2

i = ( �xm − �c4)2 −R2
m) and

eq. (2), z can be written as follows:

z =
x2

m + R2
i − R2

m − 2c3| �xm| sin φ

2| �xm| cos φ
. (3)

We note in passing that the use of the above expres-
sion rather than solving simultaneous equations for �c4 also
reduces the computational cost considerably.

As we iterate through candidate neighbors m, at any
given point, we have the current minimum z value zcurr.
We wish to define a criterion such that, given zcurr, we
need not search further when the distance | �xm| of a can-
didate neighbor m exceeds a threshold value xcut. To de-
termine this condition, we note that for a given distance
| �xm|, there is a minimum value of z depending on the value
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Fig. 5. (a) Illustration of the geometry considered for defining
the stopping criterion for adding new Delaunay tetrahedra. (b)
Comparison of the CPU time of tessellation for a set of homo-
geneous configurations of different system size. The CPU time
with periodic boundary condition with the minimum image
convention (circles) is shown along with the case of replicated
images without (squares), and with (diamonds) the stopping
criterion. In the latter cases, we use the expression given in the
text for the z coordinate of the PCMSTD. (see text).

of φ. Minimizing z with respect to φ, we get the condition

sinφ =
2c3| �xm|

x2
m + R2

i − R2
m

. (4)

Using this condition, and the current value of zcurr in
eq. (2), we get an expression for xcut as follows (note that
this condition depends on Rm. In order for the expres-
sion to hold for all the available candidates m, we use the
minimum value of the available radii):

xcut =
√

(c2
3 + z2

curr) +
√

(c2
3 + z2

curr) − (R2
i − R2

m). (5)

When | �xm| > xcut, we terminate the search for m. As
shown in fig. 5 (configurations of number density 0.5 of N
random points with N = 200 to 20, 000 were used as test
cases), the use of the termination criterion considerably
reduces the cost of the tessellation.

3 The hard-sphere system

The hard-sphere system has been studied extensively [21–
28] over the decades as an idealized model system that
nevertheless displays many essential condensed phase phe-
nomena. Of particular interest has been the use of this
system to understand aspects of amorphous phase struc-
ture [23] and jamming [24–28] and other aspects of gran-
ular matter [29–34].

In the present work, we calculate the hard-sphere equa-
tion of state for monodisperse and bi-disperse hard-sphere
fluids, and nearly jammed configurations, as well as the
crystal in the monodisperse phase. We note that the term
“free volume” is defined variously in the literature, but we
use the definition of refs. [1,16] which lead to the expres-
sion for the equation of state we mention below. For some
of these cases, we also calculate the free-volume distri-
bution. The free-volume distributions and the equation of
state using free volumes and surface areas for the monodis-
perse hard-sphere system was previously computed in [16].

To this end, we first perform Monte Carlo simulations
for a range of packing fractions for monodisperse hard-
sphere systems, and a 50 : 50 binary mixture of spheres
of unequal size, with the ratio of (additive) diameters
σ2/σ1 = 1.4. The number of particles is N = 2000. Equi-
libration runs between 100× τ and 500× τ are performed
for each independent run, where the relaxation time τ is
estimated by the decay of a density-density correlation
function. For each state point (density), we perform simu-
lations for 20–25 independent initializations. In each case,
productions runs are performed for about 2000τ and we
analyze about 2000 configutations for each independent
run. The durations for runs in the crystalline phase, in
the FCC lattice, are much shorter since short equilibra-
tion are sufficient in these cases.

The pressure of the monodisperse hard-sphere system
is given in terms of the free volumes and surface areas
by [1,16]

P

kBT
= ρ +

ρσ

2D

〈
sf

vf

〉
, (6)

where kB is the Boltzmann constant and T is the tem-
perature, σ is the diameter of a hard sphere, ρ is number
density and D is dimensionality of the system. As shown
in [35], the corresponding relation for polydisperse hard-
sphere systems is

P

kBT
=

∑
i

ρi +
∑

i

ρiσii

2D

〈
si

f

vi
f

〉
, (7)

where the index i labels components with sizes σii and
a partial number density of ρi. We use these relations in
computing the equation of state (EOS).
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Fig. 6. (a) Equation of state of the monodisperse hard-sphere
fluid and crystal, obtained from i) free volumes and surface ar-
eas (circles), ii) densities calculated in NPT Monte Carlo simu-
lations (squares), and iii) the contact value of g(r) (diamonds).
The Carnahan-Starling equation of state is shown (line) for
reference. (b) Deviations from the Carnahan-Starling equation
of state(in the unit of P

kBT
) for the monodisperse hard-sphere

fluid for the same methods. The deviations become pronounced
at high densities. The freezing density is indicated by a verti-
cal line. (c) The equation of state for a polydisperse (binary
mixture) hard-sphere fluid. Details as in panel (a) with the
Mansoori-Carnahan-Starling shown (line) for reference, along
with the generalised CS discussed in ref. [36]. (d) Deviations
from the Mansoori-Carnahan-Starling equation of state.

In fig. 6(a), the EOS of the monodisperse hard-sphere
fluid and crystal, obtained from eq. (6) is shown. For
comparison, we show the EOS obtained from i) constant
pressure simulations (NPT) where the average density for
a range of pressures is calculated, ii) the contact value of
the pair correlation function g(r) using the formula

P

ρkBT
= 1 +

2πρ

3
σ3g(σ+), (8)

and iii) the Carnahan-Starling (CS) EOS [37]. In fig. 6(b)
we show the comparison between these various evalua-
tions as deviations from the CS EOS. As expected, the
estimation based on the contact value of the g(r) is not
very accurate, but the other methods agree reasonably
well, and indicate that the measured pressure is in ex-
cess of the CS EOS at high densities. At densities above
the freezing packing fraction of 0.4945, we ensure that we
sample the metastable liquid by calculating the pair corre-
lation function and the global orientational order parame-
ter Q6 [38]. Above the packing fraction 0.525, we observe
spontaneous crystallization of the fluid samples and thus
do not report them here. In fig. 6(c) we show the EOS
(with other methods as for monodisperse spheres) for the
binary mixture fluid. As a reference, we use the Mansoori-
Carnahan-Starling (MCS) EOS [39]. The deviations from
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Fig. 7. Free-volume distributions for (a) the monodisperse
hard-sphere fluid, (b) the monodisperse hard-sphere crystal,
(c) the smaller component of the binary hard-sphere mixture,
and (d) the larger component of the binary hard-sphere mix-
ture. In each case, the solid lines are fits to the generalized
gamma distribution (eq. (9)). We see that eq. (9) provides a
good description of the free-volume distributions for the fluids,
whereas systematic deviations are seen for the crystal.

the MCS EOS shown in fig. 6(d) show stronger deviations
from the MCS EOS than in the monodisperse case.

Next we compute the full distribution of free vol-
umes. In fig. 7(a) we show the free-volume distribution
for the monodisperse fluid. The free-volume peak moves to
smaller value with increasing packing fraction as expected.
The numerical data are fit to the generalized gamma dis-
tribution (also considered in [16] and references therein,
and [40])

f(vf ) =
γβ

α+1
γ

Γ
(

α+1
γ

)vα
f exp(−βvγ

f ), (9)

which are shown as solid lines in the figure. We see that the
fits are excellent at all densities. The free-volume distribu-
tions for the monodisperse crystal are shown in fig. 7(b).
Fits of the numerical data to the generalized gamma dis-
tribution are not very good in this case, with significant
deviations in the tails. Free-volume distributions for the
binary mixture fluid for the two components are shown
in fig. 7(c) and (d), along with the fits to the general-
ized gamma distribution. The fits for the bi-disperse hard-
sphere fluid are also very good.

The fit parameters α, β and γ of eq. (9) are plotted for
the monodisperse fluid and crystal phases in fig. 8(a), (b)
and (c). We see that the parameters α and γ are slowly
varying, with α values varying non-monotonically in the
range of 0.22 to 0.3, and γ values approaching a nearly
constant value of 0.5 at high densities in the fluid phase.
In fig. 8(d), (e) and (f) we report the fit parameters for the
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Fig. 8. Parameters α, β and γ of eq. (9). (a) α (b) β, and (c)
γ, for the monodisperse hard-sphere fluid and crystal. (d) α (e)
β, and (f) γ, for the two components of the binary hard-sphere
fluid. The average free volumes for the (g) monodisperse fluid,
(h) smaller, and (i) larger components of the binary mixture.

bi-disperse case. We compare the mean free volumes ob-
tained from fit parameters and numerical data in fig. 8(g)
for monodisperse fluid and in fig. 8(h) and (i) for the bi-
disperse case. The comparison shows that the fits faith-
fully reproduce the behavior of the mean values.

We have also studied the free-volume distributions of
amorphous configurations at higher densities, close to ran-
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Fig. 9. Parameters α, and γ for Voronoi free volumes fitted to
eq. (9), with corresponding values from free-volume distribu-
tions shown in fig. 8. Values of (a) α and (b) γ from [40] and
the present work for Voronoi free volumes compare well, but
are significantly different both in values and trends from the
corresponding values for free volumes.

dom close packing or the jamming point. These configura-
tions show deviations from the behavior displayed by fluid
configurations near and below the freezing density. A de-
tailed discussion of this case is taken up elsewhere [41].
In [40], distributions of Voronoi free volumes were con-
sidered, defined to be the volume of the Voronoi cells of
spheres, subtracting the average volume of the Voronoi
cells at close packing. These distributions were fitted to
the generalized gamma distribution in eq. (9). We report
in fig. 9(a) and (b) the parameters α and γ from [40] along
with our evaluations for the monodisperse fluid, which are
seen to be in good agreement (in the notation we use, the
parameters m and δ in [40] are given by m = (α + 1)γ,
δ = γ). However, we note that by comparison, the corre-
sponding fit parameters for the free volume show different
values, as well as an opposite trend with density. The use
of the Voronoi free volume vs. the free volume in different
situations thus bears further scrutiny.

4 Protein structure analysis

The analysis of the structure of proteins in the native state
is of great interest as it forms the basis of understanding
the functioning of the proteins [4–11,42]. Structure based
ligand design requires detailed characterization of the ex-
terior of the protein, including the geometry and compo-
sition of pockets [7]. Further, the nature of the packing
of residues in proteins may also shed light on the mecha-
nisms of protein folding [43–47]. Specifically, the statistics
and role of pockets and cavities has been addressed in this
context [44,45]. In order to demonstrate the utility of our
methods to the analysis of protein structure, we compute
various quantities that have been discussed in the litera-
ture, some of which have already been computed and well
characterized. Towards this end, we analyze up to 800 pro-
teins from the protein data bank, of sequence length rang-
ing from 20 to 4500, most of the analyzed proteins being in
the range of 100 to 1000. For these proteins, we compute
the occupied volume, surface area, and the composition of
the surface residues, the volumes, surface areas and com-
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position of cavities and pockets, and the connectivity of
residues lining cavities.

The volume of a protein is defined as that contained
within the solvent accessible (SA) surface [4], which we
refer to as the SA volume. The SA volume, and the SA
surface area are computed by using a tessellation with
replicated images as described above. The SA volume is
the complement of the volume of the largest cavity that
corresponds to the exterior of the protein, and the SA
surface area is the surface area of the largest (exterior)
cavity. We do not consider in this work the evaluation of
the molecular surface volume [4]. For these calculations,
we consider the geometric problem of spheres located at
atomic coordinates of size equal to their van der Waals
radius plus that of a water molecule (1.4 Å) treated as
the probe. The buried cavities are all other cavities that
are identified, excluding the exterior “cavity” (see fig. 1).
In order to define pockets, we use the physical definition
that a pocket is a concave region on the surface of the
protein such that the empty space defining the pocket is
separated from the exterior by a “neck” that is narrower
than the largest sphere that may be accommodated by
the pocket. In order to identify such pockets, we use the
following procedure:

A tessellation of the protein is performed which yields
a set of Delaunay tetrahedra, the external surface of whose
union defines the convex hull. The DT at the periphery
are identified by the fact that at least one of the edges of
each such DT is not shared by a second DT that together
encloses the DT face. Such “dangling edges” are identi-
fied and used in the procedure to identify pockets (see the
illustration fig. 1(c)). We identify the set of Voronoi ver-
tices and edges that are in the void, and by analyzing the
connectivity of such vertices through edges that are in the
void, identify the cavities as corresponding to a connected
set of vertices in the void, none of which are connected
to a dangling edge. The cavities are excluded from further
analysis. Next, we perform an iterative procedure, starting
with each of the dangling edges. Considering the vertex to
which a dangling edge is connected, we test whether the
vertex is contained within the DT it corresponds to. If
not, the dangling edge and the vertex are eliminated from
consideration, and the other edges connected to the vertex
are now added to the list of dangling edges. The procedure
terminates when each of the dangling edges is connected
to a vertex that is contained within the DT it corresponds
to. Each dangling edge defines the mouth of a pocket, and
in principle a given pocket could have more than one such
mouth. We next perform a cluster analysis to identify the
set of connected vertices and edges among the remaining
set. Each connected set of vertices then corresponds to a
pocket.

Now we describe the results from our analysis. Fig-
ure 10(a) shows the number of pockets, cavities, and
pockets plus cavities plotted against the SA volume. Fig-
ure 10(b) shows the sum of the volumes of pockets plus
cavities, pockets, and cavities vs. SA volume. Figure 10(c)
shows the SA surface area vs. SA volume. The linear cor-
relation between them was also observed in a previous
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Fig. 10. The number and volumes of cavities and pockets
in proteins as a function of SA volume and surface area. (a)
Number of pockets and cavities vs. SA volume. (b) Volume of
pockets and cavities vs. SA volume. (c) SA surface area vs. SA
volume. (d) Pockets and cavities area vs. SA area. See text for
the procedure used.
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Fig. 11. (a) Number of cavities and pockets vs. the sequence
length of proteins. (b) Volume of cavities and pockets vs. the
sequence length of proteins.

study [44]. Figure 10(d) shows the sum of the surface ar-
eas of pockets, and cavities vs. the SA surface area.

Figure 11(a) shows the number of cavities and pockets
vs. the sequence length of the proteins. As found in [44],
we find a linear relationship between the sequence length
of the proteins and the number of pockets and cavities.
Figure 11(b) shows the sum of the volumes of cavities and
pockets vs. the sequence length of the proteins. Unlike the
observation in [44] that the volume of the cavities and
pockets does not correlate with the sequence length, how-
ever, we find that there is a reasonable (but poorer than
the number in fig. 11(a)) correlation, with the volumes
scaling as L2.

In fig. 12(a) we show the size distribution of pockets
plus cavities. This distribution was considered by Liang
and Dill in [44], who found that the frequency of sizes
scaled with the size as a power law, with an exponent of
−1.67. Liang and Dill analyzed this result in terms of the
statistics expected for a random packing of spheres. The
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Fig. 12. (a) Size distribution of pockets + cavities, pockets.
(b) Size distribution of cavities.

expected exponent for three dimensions is −1.5, which
therefore makes the analogy not fully conclusive. In this
context, it is also interesting to inquire whether the buried
cavities (which have a direct analogy with cavities in
sphere packings) might have a different scaling. To study
this, we calculate the size distribution separately for pock-
ets and cavities, which are shown in fig. 12(b) and (a),
respectively. Interestingly, we find that the size distribu-
tion of pockets shows essentially the same behavior as the
distribution of pockets plus cavities, whereas the size dis-
tribution of cavities, while still being a power law distribu-
tion, is rather different, with an exponent of ∼ −2.5. This
observation, and its implications for the nature of packing
observed in proteins, is described elsewhere [48].

In fig. 13(a) we show the fraction of residues on the
surface vs. interior residues as a function of the sequence
length. Over a broad range of sizes, these fractions remain
roughly constant. This is consistent with the fact that the
surface area varies roughly linearly with the volume of
proteins, as shown in fig. 11(c) and observed in [44]. We
show in fig. 13(b) the fraction of residues on the surface
that forms a part of a pocket. Interestingly, this fraction
varies very strongly with sequence length, with nearly 80%
of the surface residues being a part of a pocket for larger
proteins. In fig. 13(c), we show similarly the fraction of
interior residues that line a cavity. The fraction is roughly
constant over a broad range of protein lengths. The inset of
fig. 13(c) shows a similar correlation of the number of cav-
ity residues and interior residues with protein length. In
fig. 14(a) we show the fraction of hydrophobic, polar and
charged residues as a function of sequence length. These
fractions, except for increases in scatter, do not depend
on the sequence length. With this as reference, we con-
sider the fraction of hydrophobic residues lining cavities
and pockets, as a fraction of the number of hydrophobic
residues in the entire protein in fig. 14(b), and similarly the
fraction of polar and charged residues in fig. 14(c) and (d).
We find that compared to the full protein, cavities have a
pronouncedly increased fraction of hydrophobic residues,
and a decreased fraction of charged residues. The frac-
tion of polar residues also is lower than the full protein,
but the decrease is not as marked as the charged residues.
The opposite trends are observed for pockets. Such an ob-
servation supports the hydrophobic core collapse model of
protein folding [49]. In fig. 15 we show information regard-
ing the secondary structure and connectivity of residues
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Fig. 13. (a) Fraction of surface vs. buried residues. (b) Frac-
tion of residues lining pockets among surface residues. (c) Frac-
tion of residues lining cavities among interior residues. Inset
shows total number of interior and cavity residues vs. total
protein residues.
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Fig. 14. (a) Fraction of hydrophobic residues out of all residues
in the proteins. (b) Fraction of hydrophobic, (c) polar and (d)
charged residues among residues lining cavities, and pockets.
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Fig. 15. Secondary structure and connectivity of residues lin-
ing cavities. (a) Percentage of α helix or β sheet secondary
structure (S), and those which are part of coils (C). (b) Distri-
bution of contact types (see text for the definition of contact
type) in cavities and pockets. (c) Distribution of sequence sepa-
ration between neighbor residues normalized by protein length
lining cavties. The distribution is power law with exponent
−1. (d) Distribution of sequence separation between neighbor
residues lining pockets.

lining cavities. In fig. 15(a) we show the percentage of α
helix, β-sheet and coil for the whole protein. In fig. 15(b)
we show the distribution of contact types between neigh-
bor residues lining cavties and pockets. We represent α
helix, β sheet and coil segments by α, β, and c. There
are six possible contacts α-α, α-β, β-β, α-c, and c-c. We
find that helix-helix, helix-sheet and sheet-sheet contacts
are present in cavities. Surprisingly they are almost ab-
sent in pockets. Previous studies [47] reported that helix
formation takes place in the early stages of protein fold-
ing. We have shown in fig. 14(b) that cavities are rich in
hydrophobic residues, and it is of interest to ask what role
hydrophobic collapse and secondary structure formation
in the protein folding pathway play in the formation of
cavities. As a characterization of the structure of the cavi-
ties, we study the sequence separation [47] between neigh-
boring residues lining the cavities. We observe power law
distribution of these separations (normalized to the pro-
tein length), as shown in fig. 15(c), whereas the separa-
tions between neighbors lining pockets (fig. 15(d)) show
a much flatter distribution, with a cutoff imposed by the
length of the proteins.

5 Conclusions

In this manuscript we discussed an algorithm for charac-
terizing the void space in polydisperse sphere packings.
We presented an algorithm for carrying out the radical

plane construction, by generalizing a previously devel-
oped method for the Voronoi construction. We employed
the methodology to study monodisperse and polydisperse
hard-sphere fluids and crystals, obtaining the equation of
state, and the free-volume distributions. The free-volume
distributions for polydisperse hard-sphere packings have
not been evaluated before. We also applied the methods
presented here to the analysis of protein structures. The
presented results indicate that the methods we discuss can
be employed very effectively in obtaining valuable infor-
mation regarding the structure of proteins.

We wish to thank Dr. Niels Ellegaard for very useful discus-
sions related to the use of replicated images in our tessella-
tion algorithm. The invaluable help of Shiladitya Sengupta and
Vishwas Vasisht in the preparation of the manuscript and their
comments are gratefully acknowledged.
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31. G.E. Schröder-Turk et al., EPL 90, 34001 (2010).
32. J.G. Puckett, F. Lechenault, K.E. Daniels, Phys. Rev. E

83, 041301 (2011).
33. K.A. Newhall, I. Jorjadze, E. Vanden-Eijnden, J. Brujic,

Soft Matter 7, 11518 (2011).
34. S.-C. Zhao, S. Sidle, H.L. Swinney, M. Schröter, EPL 97,

34004 (2012).
35. D.S. Corti, R.K. Bowles, Mol. Phys. 96, 1623 (1999).
36. H. Hansen-Goose, R. Roth, J. Chem. Phys. 124, 154506

(2006).

37. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635
(1969).

38. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B
28, 784 (1983).

39. G.A. Mansoori, N.F. Carnahan, K.E. Starling, T.W. Le-
land, jr., J. Chem. Phys. 54, 1523 (1971).

40. V.S. Kumar, V. Kumaran, J. Chem. Phys. 123, 114501
(2005).

41. M. Maiti, S. Sastry, preprint.
42. S.J. Hubbard, P. Argos, J. Mol. Biol. 261, 289 (1996).
43. B. Honig, J. Mol. Biol. 293, 283 (1999).
44. J. Liang, K.A. Dill, Biophys. J. 81, 751 (2001).
45. M. Bueno, N. Cremades, J. Luis Neira, J. Sancho, J. Mol.

Biol. 358, 701 (2006).
46. J.R. Banavar, A. Maritan, Rev. Mod. Phys. 75, 23 (2003).
47. C. Micheletti, J.R. Banavar, A. Maritan, F. Seno, Phys.

Rev. Lett. 82, 3372 (1999).
48. M. Maiti, S. Sastry, preprint.
49. H.S. Chan, S. Bromberg, K.A. Dill, Philos. Trans. R. Soc.

London Ser. B., Biol. Sci. 348, 61 (1995).


