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Abstract. We present static electric dipole polarizabilities αd(Z, N) from numerical nonrelativistic re-
stricted Hartree-Fock (RHF) finite-field calculations for high-spin open-shell S states (L = 0) of atoms and
isoelectronic ions with N ≤ 55 electrons. All these S states result from one or more half-filled shells. For
eight isoelectronic sequences, those with N = 3, 7, 11, 15, 23, 29, 33 or 41 electrons where the electronic
ground state of the neutral or nearly neutral members is conserved upon increase of the nuclear charge
number Z, polarizability data are given for ions with charge number Q = Z − N up to Q = 90. In ad-
dition, these data are represented in terms of rational functions of Q (with absolute value of the relative
error of the fit always below 4%). The rational functions are comparable to the classical nonrelativistic
result αd(Z, 1) = 4.5/Z4 = 4.5/(Q + 1)4 for the polarizability of the 2S ground state of a hydrogen-like
system. Our results also contribute to constitute a reference database (i) for algebraic approaches relying
on basis functions, and (ii) for the discussion of relativistic and correlation effects on polarizabilities along
isoelectronic sequences.

1 Introduction

The static electric dipole polarizability αd(Z,N) of an
atom or atomic ion with N electrons and nuclear charge
number Z is a fundamental property of that system [1–4].
In general, accurate experimental or theoretical data for
this quantity are available only for neutral atoms or
slightly charged ions, but not for higher or highly charged
cations. For example, one way to accurately determine
static electric dipole polarizabilities for slightly charged
ions with N electrons from experiment is through spec-
troscopic studies of Rydberg states of the corresponding
atom or ion with N + 1 electrons [5,6]. The leading-order
term for the attractive interaction between the Rydberg
electron and the ionic core is − (1/2)αd(Z,N)/r4. Static
electric dipole polarizabilities have found widespread ap-
plication, e.g., in the modelling of potential energy curves
for ground and excited electronic states of diatomic molec-
ular ions formed from metal ions and rare gas atoms [7,8].
The lack of knowledge of polarizabilities for isoelectronic
sequences of atoms and atomic ions, also with respect to
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their Z-expansion, is in contrast to the fact that atomic
ions of almost any degree of ionization can be generated
and studied rather easily with modern experimental equip-
ment, and are of great importance in fundamental science,
applied science and technology [9–11]. Data for polariza-
bilities along isoelectronic sequences of atoms and atomic
ions, covering the full range of charge numbers Q = Z−N
from small values (anions, atoms or cations) up to large
values (highly charged cations), are still scarce. If these
sequences are studied at all, then either only some early
members are considered, or Z-expansions (precisely, Z−1-
expansions) valid for large Z are derived [12–14].

We present here accurate data for static electric dipole
polarizabilities from numerical nonrelativistic restricted
Hartree-Fock (RHF) finite-field calculations for high-spin
open-shell S states of atoms and members of their iso-
electronic sequences. All these S states result from one or
more half-filled shells. Atoms and ions with up to N = 55
electrons are considered, as well as eight isoelectronic se-
quences up to Q = 90. The sequences are chosen by the
requirement that the electronic ground state found for
small charge numbers (anionic, neutral or cationic sys-
tems) must not change upon increase of Z.

The Hartree-Fock approximation is known to have a
few shortcomings: relativistic and correlation effects are
omitted, and degenerate or near-degenerate states from
other electron configurations, possibly gaining importance
in the high-Z limit for some of the isoelectronic sequences
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included here, are excluded. However, our accurate non-
relativistic data certainly provide a firm basis of bench-
mark values against which results from more sophisti-
cated methods, including the effects just mentioned, can
be compared.

2 Methods

We give a very brief description of the numerical RHF
method as used here to determine the energy EA(F ) of
some state A of an atom or atomic ion in a static elec-
tric field of strength F , mainly in order to introduce a
suitable notation. Further details are given in the litera-
ture [15–18]. The representation of dipole polarizabilities
along isoelectronic sequences in terms of rational func-
tions of the total charge number Q was introduced in our
previous study on closed-shell systems [19].

2.1 The energy, the induced dipole moment
and the static dipole polarizability

We consider an N -electron atom or atomic ion with in-
finitely heavy, spin-free, point-like nucleus with charge
number Z placed at the origin of the coordinate system.
Its total charge number Q = Z − N always fulfils the
inequality Q > −2 (non-existence of stable free atomic di-
anions). In the nonrelativistic case, this system, if put in
a static homogeneous electric field of strength F (oriented
along the z direction), is described by the Hamiltonian (in
atomic units)

Ĥ(F ) =
N∑

i=1

(hi + F zi) +
1
2

N∑
i�=j

gij (1)

with
hi = − 1

2
∇2

i −
Z

ri
, gij =

1
rij
. (2)

For the present study, we restrict ourselves to atoms or
atomic ions in a high-spin open-shell S state (L = 0) re-
sulting from one or more half-filled shells. A normalized
field-strength dependent total state function ΨA(F ) for
such an open-shell state A can always be chosen as a sin-
gle Slater determinant constructed from field-strength de-
pendent spin orbitals, such that it transforms as an eigen-
function of the space and spin symmetry operators L̂z , Ŝ2

and Ŝz with respective eigenvalues Λ = 0, S(S + 1) > 0
and MS = S. This can be guaranteed by construct-
ing the Slater determinant from an orthonormal set of
symmetry-adapted spin orbitals {|ψk 〉} (1 ≤ k ≤ kmax,
〈ψk |ψl 〉 = δkl):

l̂z|ψk 〉 = ±λk |ψk 〉, ŝ2|ψk 〉 = 3
4 |ψk 〉,

ŝz|ψk 〉 = ± 1
2 |ψk 〉. (3)

Hence these spin orbitals can be written in product form
as

ψnλmms(r, σ) = eimφfnλ(r, θ)χms(σ), (4)

where fnλ is the shell function, eimφ is the subspecies func-
tion (m = ±λ), and χms denotes the spin function (either
α or β). The spatial part of the spin orbitals is then ex-
panded with a partial wave ansatz [16]

eimφfnλ(r, θ) =
�max∑
�=λ

r−1Pnλ�(r)Y�m(θ, φ). (5)

For non-vanishing field strengths, this expansion, if taken
as an infinite expansion, would be exact, but for every
practical purpose the expansion length Δ� = �max −λ+ 1
is necessarily finite. The radial functions Pnλ� have to obey
the boundary conditions Pnλ�(0) = limr→∞ Pnλ�(r) = 0
and must be determined anew for every given field
strength F and chosen expansion length Δ�. Orbitals with
the same quantum numbers n, λ are required to share the
same set of radial functions, i.e., the equivalence restric-
tion is applied.

The expectation values for energy and induced dipole
moment, EA(F ) = 〈ΨA(F ) | Ĥ(F ) |ΨA(F ) 〉 and μA(F ) =
〈ΨA(F ) | ∑

i zi |ΨA(F ) 〉, are finally expressed in terms of
certain one-electron and two-electron radial integrals (see
Refs. [16,17] for details). Variation of the energy expec-
tation value with respect to the radial functions, under
restriction to orthonormality of the spin orbitals, leads to
coupled pseudo-eigenvalue problems for the set of radial
functions associated with the shells. After discretization of
the associated set of coupled ordinary second-order differ-
ential equations, the radial functions Pnλ�(r) are obtained
with numerical methods, as in the central field case [20,21].

With a complete set of radial functions Pnλ�(r) for all
shells at hand, the energy EA(F ) and the induced electric
dipole moment μA(F ) at a given field strength F are easily
calculated from the radial integrals mentioned above. For
a many-electron atom or atomic ion, energy and induced
dipole moment are even and odd functions, respectively,
of the field strength,

EA(F ) =
∞∑

k=0

ak

(2k)!
F 2k

= a0 +
a1

2
F 2 +

a2

24
F 4 + . . . , (6)

μA(F ) =
dEA

dF
=

∞∑
k=1

ak

(2k − 1)!
F 2k−1

= a1 F +
a2

6
F 3 + . . . , (7)

where

ak =
d2k−1μA

dF 2k−1

∣∣∣∣
F=0

=
d2kEA

dF 2k

∣∣∣∣
F=0

.

The higher-order terms in these expansions become more
and more important with increasing field strength. A suf-
ficiently large expansion length Δ� is required in equa-
tion (5) in order to take these terms properly into
account [17].



Page 3 of 7

The static electric dipole polarizability is defined as

αd = −a1 = − dμA

dF

∣∣∣∣
F=0

= − d2EA

dF 2

∣∣∣∣
F=0

. (8)

Given a set of energies EA(Fi) or induced dipole moments
μA(Fi) for various field strengths Fi = iΔF (0 ≤ i ≤
imax), the polarizability is obtainable either from a linear
least-squares fit of a polynomial in F to these data values,
or from finite-difference expressions.

2.2 Data generation and analysis

The numerical multiconfiguration self-consistent field pro-
gram for atoms in a static electric field, set up by Stiehler
and Hinze [17,18], has been modified1 and used to calcu-
late energies and induced dipole moments at several field
strengths for high-spin open-shell S states of atoms and
members of their isoelectronic sequences. All considered
S states result from one or more half-filled shells. The
number of electrons in these systems ranges from N = 3
(Li sequence) to N = 55 (Cs, Ba+ and La2+). The isoelec-
tronic sequences were selected by the requirement that the
electronic ground state found for small values of the total
charge number Q (anionic, neutral or cationic systems)
must not change upon increase of Z. Eight such isoelec-
tronic sequences, with N = 3, 7, 11, 15, 23, 29, 33 or 41
electrons, were considered for total charge numbers rang-
ing from Q = −1 or Q = 0 up to Q = 90. For every single
case under study, the expansion lengthΔ� in (5) was taken
as three or four for all shells in a calculation. All radial
functions Pnλ�(r) present in the set of expansions (5) were
represented with n = 800, 1600, 3200 or 6400 equidistant
points on a transformed radial grid. The field strength F
was increased until the magnitude of the induced dipole
moment reached a value of μ ≈ 0.02 a.u. In this way, typ-
ically imax ≈ 20 values for energy EA(Fi) and induced
dipole moment μA(Fi) at increasing field strengths were
obtained. The relations (8) were then used to calculate the
polarizability.

Finally, for each of the eight isoelectronic sequences
(N constant) a rational function

α̃d(Q) =
1

(Q−Q0)n

Fk(Q)
Gl(Q)

(Q > Q0),

Fk(Q) =
k∑

i=0

fiQ
i, Gl(Q) =

l∑
j=0

gjQ
j, (9)

was fitted to the set of polarizabilities αd(Z,N) = αd(Z−
N) = αd(Q). Details of the procedure adopted to deter-
mine the positionQ0 and the order n of the pole defining a
lower boundary for Q, and of the non-linear least-squares
fit used to fix the polynomial coefficients fi and gj are
given in our previous study [19]. We assume that none of
these polynomial coefficients vanishes.

1 V. Koch, modified version of the numerical MCSCF pro-
gram for atoms in a static electric field [18] (unpublished).

3 Results

We present in Tables 1 and 2 our results for the static
dipole polarizabilities αd(Z,N) from numerical nonrela-
tivistic restricted Hartree-Fock (RHF) finite-field calcula-
tions for high-spin open-shell S states of atoms and iso-
electronic ions. In total, we considered 186 systems. All
values are given in atomic units, conversion to SI units
is easily achieved with the relation 1 a.u. = e2a2

0/Eh =
1.64877727 × 10−41 (Cm)2 J−1 [22] (e is the elementary
charge, a0 the Bohr radius, Eh the Hartree energy unit,
see [4] for an overview of other units used for the dipole
polarizability). In addition, a table with field-free nume-
rical RHF energies of the atoms and isoelectronic ions is
provided as electronic-only material2.

3.1 Atoms and ions with small charge number

The entries of Table 1 are arranged according to their
groups in the periodic table. In each row of the table, the
number of electrons N is given, followed by a name for
the sequence, by the electron configuration and by the
LS term considered. Then follow our results for the static
polarizabilities of the atom and ions with small charge
numbers (Q = −1, 0, 1, 2). A checkmark sign in the last
column indicates availability of data for the isoelectronic
sequence in Table 2.

Data for anions are given only for anions of atoms
from group 14 (C−, Si−, Ge−, Sn−) and for the ions Cr−
(N = 25), Nb− (N = 42) and Mo− (N = 43). In all
other cases of anionic systems, we did not succeed to de-
termine the static polarizability. Reasons for this failure
include, e.g., severe convergence problems in the SCF pro-
cedure or, if SCF convergence could be achieved, positive
orbital energies already in field-free calculations (essen-
tially indicating an unbound single-particle state leading
to autoionization).

We believe our values, derived from field-strength de-
pendent energies and induced dipole moments, to be ac-
curate enough to allow six digits to be given. As far as
data for comparison are available, our values are in full
accord with the most recent ones from numerical RHF
calculations [17,23]. Together with Table 1, we also pro-
vide a survey of literature data obtained from numerical
or algebraic RHF calculations, or from time-dependent
HF calculations in the static limit (ω = 0). In almost
all cases, these previously published values compare very
well with our new values (differences are typically be-
low 1%). We can thus conclude that the specially de-
signed basis sets used in those studies work very well
and lead to the desired results for αd close to its Hartree-
Fock limit value. The early and extensive work by Fraga
et al. [24–26] deserves mention because it provides static
electric dipole polarizabilities for all atoms, from helium to
nobelium, and several early members of their isoelectronic

2 Electronic-only material: Table with field-free numerical
RHF energies for atoms and isoelectronic ions (see ** on the
first page).
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Table 1. Six-digit static electric dipole polarizabilities αd(Z, N) (in a.u.†) from numerical nonrelativistic RHF finite-field
calculations for high-spin open-shell S states (L = 0) of atoms and ions with small charge number Q = Z − N (electron
configurations as indicated).

N Sequence name, electron Q = −1 Q = 0 Q = +1 Q = +2 Q > 2
configuration and state

3 Li [He] 2s1 2S – 170.120a1 24.9596b1 7.95019 �‡

11 Na [Ne] 3s1 2S – 190.503a2 38.8547b2 15.4462c1 �
19 K [Ar] 4s1 2S – 417.811a3 98.6261b3 42.7804

37 Rb [Kr] 5s1 2S – 524.878a4 132.096b4 60.2147

55 Cs [Xe] 6s1 2S – 807.639a5 213.398b5 100.248

7 N [He] 2s2 2p3 4S◦ 51.6627d1 7.35815e1 2.67238 1.28727 �
15 P [Ne] 3s2 3p3 4S◦ 133.754d2 25.4694e2 10.9397 5.99168 �
33 As [Ar] 3d10 4s2 4p3 4S◦ 148.786 30.4691e3 14.4328 8.64222 �
51 Sb [Kr] 4d10 5s2 5p3 4S◦ 175.683 45.4680e4 23.6485 15.0553

23 Cr+ [Ar] 3d5 6S – 68.3893 8.96554f1 3.19986g1 �
41 Mo+ [Kr] 4d5 6S – 67.5329 16.7455 7.67505 �
24 Cr [Ar] 3d5 4s1 7S – 112.881h1 40.4562 20.5349

42 Mo [Kr] 4d5 5s1 7S 1045.37 127.723 53.8296 29.9529

25 Mn [Ar] 3d5 4s2 6S 977.235 90.1395i1 36.4941 20.0647

43 Tc [Kr] 4d5 5s2 6S 979.527 115.925 52.2363 30.7953

29 Cu [Ar] 3d10 4s1 2S – 77.1914j1 25.3019k1 12.9081 �
47 Ag [Kr] 4d10 5s1 2S – 105.545j2 37.9484k2 20.7683

† Conversion to SI units: 1 a.u. = 1.64877727 × 10−41 (Cm)2 J−1.
‡ The checkmark sign indicates availability of data for the isoelectronic sequence, see Table 2.

Literature values for αd(Z, N) from either numerical or algebraic nonrelativistic RHF calculations or from time-dependent HF
calculations in the static limit (basis sets used were assumed to be of near-Hartree-Fock-limit quality with respect to this
property):

a1 170.1 [16], 171.6 [28], 170.1 [17], 169.5 [29], 169.50 [30], 170.11998 [23];
a2 191.2 [31], 190.9 [28], 190.50 [17], 190.5 [29], 190.49 [30], 190.49 [32];
a3 416.1 [33], 416.4 [28], 417.8 [17], 416.7 [29], 416.60 [30];
a4 523.7 [28], 523.7 [33], 524.2 [29], 522.39 [30];
a5 806.8 [29], 806.81 [30];
b1 24.25 [28], 24.71 [29];
b2 38.90 [31], 38.84 [28], 38.91 [29];
b3 98.0 [28], 98.27 [29], 98.64 [34];
b4 130.5 [28], 131.6 [29], 132.15 [34];
b5 211.6 [29], 213.47 [34];
c1 15.45 [31];
d1 48.2 [35], 50.1 [36];
d2 129.9 [35], 136.3 [37];
e1 7.436 [16], 7.3 [38], 7.3581 [17], 7.34 [39], 7.3556 [40];
e2 25.08 [41], 25.2 [38], 25.469 [17], 25.47 [42];
e3 30.469 [17];
e4 45.49 [43];
f1 9.00 [44];
g1 3.23 [44];
h1 112.88 [17], 106.26 [45], 112.9 [46];
i1 90.139 [17], 89.2 [45], 90.6 [46];
j1 73.56 [47], 77.190 [17], 76.4 [48], 76.18 [49], 73.46 [45];
j2 104.0 [48], 105.4 [47];
k1 24.83 [50];
k2 37.12 [50].
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Table 2. Six-digit static electric dipole polarizabilities αd(Z, N) (in a.u.†) for isoelectronic sequences of high-spin open-shell S
states (L = 0) of atoms and ions with N electrons (from numerical nonrelativistic RHF finite-field calculations, charge number
Q = Z − N , electron configurations and LS states as in Tab. 1, see Fig. 1 for a graphical representation of the data).

Q N = 3 N = 7 N = 11 N = 15 N = 23 N = 29 N = 33 N = 41
(Li 2s1 2S) (N 2p3 4S◦) (Na 3s1 2S) (P 3p3 4S◦) (Cr+ 3d5 6S) (Cu 4s1 2S) (As 4p3 4S◦) (Mo+ 4d5 6S)

−1 — 5.16627(+1)‡ — 1.33754(+2) — — 1.48786(+2) —
0 1.70120(+2) 7.35815 1.90503(+2) 2.54694(+1) 6.83893(+1) 7.71914(+1) 3.04691(+1) 6.75329(+1)

+1 2.49596(+1) 2.67238 3.88547(+1) 1.09397(+1) 8.96554 2.53019(+1) 1.44328(+1) 1.67455(+1)
+2 7.95019 1.28727 1.54462(+1) 5.99168 3.19986 1.29081(+1) 8.64222 7.67505
+3 3.49174 7.20609(−1) 7.94407 3.71614 1.65783 7.85027 5.79645 4.51407
+4 1.83368 4.44155(−1) 4.69443 2.49097 1.02409 5.26093 4.16134 3.01733
+5 1.07970 2.92974(−1) 3.02916 1.76229 6.97544(−1) 3.75280 3.12760 2.17587
+6 6.88505(−1) 2.03306(−1) 2.07804 1.29771 5.05104(−1) 2.79716 2.43019 1.64913
+7 4.65632(−1) 1.46764(−1) 1.49172 9.85796(−1) 3.81401(−1) 2.15431 1.93689 1.29453
+8 3.29453(−1) 1.09358(−1) 1.10910 7.67783(−1) 2.96951(−1) 1.70207 1.57516 1.04307
+9 2.41596(−1) 8.36347(−2) 8.48096(−1) 6.10399(−1) 2.36705(−1) 1.37262 1.30222 8.57650(−1)

+10 1.82396(−1) 6.53698(−2) 6.63615(−1) 4.93722(−1) 1.92258(−1) 1.12579 1.09144 7.16732(−1)
+20 2.68217(−2) 1.13598(−2) 1.18246(−1) 1.05170(−1) 4.27467(−2) 2.66860(−1) 2.93978(−1) 1.95548(−1)
+30 8.40493(−3) 3.77282(−3) 4.00442(−2) 3.83525(−2) 1.58763(−2) 1.03631(−1) 1.21377(−1) 8.24044(−2)
+40 3.64778(−3) 1.68545(−3) 1.81206(−2) 1.80749(−2) 7.52274(−3) 5.08251(−2) 6.17696(−2) 4.25711(−2)
+50 1.89991(−3) 8.93019(−4) 9.68682(−3) 9.91364(−3) 4.12579(−3) 2.86448(−2) 3.56921(−2) 2.48629(−2)
+60 1.11215(−3) 5.28679(−4) 5.77199(−3) 6.01250(−3) 2.49628(−3) 1.77170(−2) 2.24771(−2) 1.57789(−2)
+70 7.06133(−4) 3.38358(−4) 3.71230(−3) 3.91721(−3) 1.62095(−3) 1.17146(−2) 1.50664(−2) 1.06374(−2)
+80 4.75980(−4) 2.29430(−4) 2.52690(−3) 2.69272(−3) 1.11022(−3) 8.14587(−3) 1.05894(−2) 7.50904(−3)
+90 3.35905(−4) 1.62653(−4) 1.79697(−3) 1.92978(−3) 7.92759(−4) 5.89173(−3) 7.72545(−3) 5.49670(−3)

† Conversion to SI units: 1 a.u. = 1.64877727 × 10−41 (Cm)2 J−1.
‡ The number in brackets following the entries indicates the power of ten by which the entry is to be multiplied.

sequences. Based on an average-energy-of-configuration
approach, both ground-state and excited-state electron
configurations were considered. Their values, calculated
from the Pople-Schofield [27] variational-perturbation ex-
pression for αd, are given to three or four digits, in units
of Å3 (1 Å3 = 6.74833458 a.u.). Only very few of their
values deviate little from the more accurate later and
our present results. The following data by Fraga and
coworkers deviate by less than 5% from our state-specific
RHF values: αd(N) = 1.14 Å3 = 7.69 a.u. (N = 7),
αd(Cl2+) = 0.913 Å3 = 6.16 a.u. (N = 15) and αd(Cr+) =
1.39 Å3 = 9.38 a.u. (N = 23).

3.2 Isoelectronic sequences

We present in Table 2 static dipole polarizabilities
αd(Z,N) for additional members of eight isoelectronic se-
quences with N = 3, 7, 11, 15, 23, 29, 33 and 41 electrons.
With only two exceptions, the selected high-spin open-
shell S states (already indicated in Tab. 1) are ground
states for all atoms and ions along these isoelectronic se-
quences. The sole exceptions are V (N = Z = 23, 3d5)
and Nb (N = Z = 41, 4d5), for which the selected 6S
states are excited electronic states.

In an attempt to find a compact mathematical expres-
sion for the static polarizabilities αd(Z,N) for an isoelec-
tronic sequence (N constant), we introduced a rational
function representation α̃d(Q) in our previous study on
closed-shell systems [19]. The accurate analytic represen-

tation of the polarizability data for nine isoelectronic se-
quences of closed-shell systems required several different
rational function representations (9), differing, e.g., in the
order n of the pole at Q0 and in the degrees of the numer-
ator and denominator polynomials.

In the present study, just a single type of rational
function α̃d(Q) was found to suffice to provide accu-
rate analytic representations of the calculated polariz-
abilities αd(Z,N) (N constant) for all eight isoelectronic
sequences:

α̃d(Q) =
1

(Q−Q0)2
f0 + f1Q

g0 + g1Q+Q2
(Q > Q0). (10)

This expression has a pole of order n = 2 at Q0 ( − 2 <
Q0 < 0) and behaves as f1/Q3 for Q → ∞. The eight
parameter sets, obtained from the polarizability data ana-
lysis as described above, are collected in Table 3, together
with the maximum absolute value of the relative errors
Δk = α̃d(Qk)/αd(Qk)− 1 (the index k runs over the data
points, i.e., the members of an isoelectronic sequence). The
data points αd(Z,N) themselves and their analytic rep-
resentation α̃d(Q) for all eight isoelectronic sequences are
shown in Figure 1.

Even though the functions α̃d(Q) are results of a
fitting procedure, rather than exact closed-form expres-
sions, they are qualitatively comparable to the polariz-
ability of a hydrogen-like system in its 2S ground state,
αd(Z, 1) = 4.5/Z4 = 4.5/(Q+1)4. The different behaviour
for Q → ∞ (α̃d(Q) ∼ Q−3 vs. αd(Z, 1) ∼ Q−4) is due to
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Fig. 1. Static electric dipole polarizabilities αd(Z, N) (in a.u.) for isoelectronic sequences of high-spin open-shell S states of
atoms and ions as functions of total charge number Q = Z −N . Data from Table 2 (points) and their analytic rational function
representations (10) with parameters from Table 3 (curves).

Table 3. Parameters of the analytical representation (10) for αd(Q) for eight isoelectronic sequences (Q = Z −N , N constant,
max |Δ| in %).

N Q0 f0 f1 g0 g1 max |Δ|
3 −0.894708 1263.13 254.504 9.27530 6.66255 0.005
7 −1.57690 395.998 128.565 21.6045 7.04860 0.32

11 −0.87115 7756.26 1451.72 53.6502 13.0317 0.014
15 −1.58020 3553.58 1673.21 55.8193 15.0550 0.16
23 −0.535847 8643.64 627.057 437.329 16.9038 3.8
29 −1.11369 14021.3 5584.05 146.507 25.5234 0.24
33 −1.56819 17804.0 7940.58 237.147 32.7723 0.20
41 −0.878531 29365.5 5624.96 562.203 35.1152 1.1

the fact that in the many-electron ions additional sub-
shells with the same principal quantum number n become
degenerate with the open shells already present at small
Q. This is in accord with a general result derived from
double perturbation theory [51].

4 Summary and conclusions

We present here nonrelativistic static electric dipole po-
larizabilities αd(Z,N) for high-spin open-shell S states
(L = 0) of atoms and isoelectronic ions with up to N = 55

electrons, including members of eight isoelectronic se-
quences with total charge numbers ranging from Q = − 1
up to Q = 90. Our accurate data, given to six digits in
Tables 1 and 2, were obtained from numerical nonrelativis-
tic RHF finite-field calculations according to the method
outlined in Section 2. For the polarizabilities of the eight
isoelectronic sequences, accurate rational function repre-
sentations α̃d(Q) were determined by a non-linear least-
squares fit, with maximum absolute value of their relative
error Δ = α̃d/αd − 1 being always less than 4%. All eight
functions α̃d(Q) show a pole of order n = 2 at some suit-
ably determined lower boundary Q0 (−2 < Q0 < 0) and
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decrease monotonously according to a Q−3-law for large
values of Q, see Figure 1.

The rational functions α̃d(Q) from (10) can be con-
sidered as analogues of the classical nonrelativistic result
αd(Z, 1) = 4.5/Z4 = 4.5/(Q+ 1)4 for the polarizability of
the 2S ground state of a hydrogen-like system.

The results presented here also contribute, together
with the data of our previous study on polarizabili-
ties of atoms and ions from closed-shell isoelectronic se-
quences [19], to constitute a set of reference data (i) for al-
gebraic approaches relying on basis functions; and (ii) for
the discussion of relativistic and correlation effects on po-
larizabilities along isoelectronic sequences.
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