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Abstract. We studied the tunneling percolation conductivity dependence on the site or bond occupation
probability in the square lattice. The model predicts that in both, lattice and continuum systems in which
there is a hierarchy of the local conductances, the dependence of the global conductivity on the site or
volume occupation probability will yield a conductivity staircase. In particular we evaluate the implications
of the staircase on the critical behavior of the conductivity. We then show experimental evidence for the
predicted percolation-tunneling staircase in a Ag-Al2O3 granular metal system and in a carbon black-
polymer composite. Following that, we propose that for carbon nanotube (CNT) polymer composites the
data in the literature give ample support to a percolation-dispersion staircase behavior. The implication
of the present findings on the percolation-hopping problem in composite materials is also discussed.

1 Introduction

In the classical lattice percolation problem the conduc-
tivity dependence on the site occupation probability p is
predicted to exhibit the phase transition power law de-
pendence of [1,2]:

σ(p) = G(p − pc)t, (1)

where pc is the threshold for the onset of global connectiv-
ity, t is the critical exponent that has, in three dimensional
(3D) lattices, the universal value of tun ≈ 1.7–2 and G is a
parameter that is proportional to the local bond conduc-
tance g [1–3]. If, however, the conductance distribution
function f(g) is such that the lowest local conductance
that is necessary for the onset of percolation, gc, behaves
as gc ∝ (p − pc)u (where u > 0), a critical behavior with
a t = tun + u will result [3–5]. We wrote equation (1) here
for the site percolation problem because of its relevance
to systems that consist of conducting particles such as a
system of rigid spheres that can occupy sites on a lat-
tice [2,6]. Recalling that in the classical site percolation
problem two sites are considered connected if they are
nearest neighbors and both are occupied. In this exten-
sion, two spheres that occupy nearest neighbor sites are
considered geometrically and thus electrically connected
by touching. In that system the fractional occupied vol-
ume of the conducting spheres is x = γp where γ is the
filling factor of the lattice. The important finding of Scher
and Zallen (S&Z) in 1970 [6] was however that xc(= γpc)
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is essentially a dimensional constant (∼0.16 in 3D) that
applies also to systems of a random mixture of touching
conducting and insulating spheres. The fractional volume
of the conducting spheres x is proportional then to the
concentration of the conducting particles in the system,
N . Hence, it follows immediately from equation (1) that
in the S&Z model the conductivity of the system obeys
the relation:

σ(x) ∝ (x − xc)t. (2)

While the latter result is not unexpected topologically (the
critical average number of bonds per occupied site, Bc, at
xc, should be the same for the above lattice and random
systems) the extension of equation (2) to other systems in
the continuum is not straightforward. In particular, this
is not trivial when the particles involved are not spheres
and when the particle touching-connectivity criterion of
S&Z does not apply. Apart for some specially designed
experiments on S&Z like systems, one or both of these
two criteria is usually not fulfilled in systems of conduct-
ing particles. In particular, in composite materials where
the particles do not actually touch and the interparticle
conduction is by tunneling, the essence of percolation, i.e.,
the limited connectivity of the system, seems to lose its
meaning [7,8]. This is since no particles are geometrically
connected but all particles are electrically connected for
any value of x. It is quite surprising then that even for
such systems the relation given by equation (2) is gener-
ally observed experimentally [3,9].

In order to derive an explanation for the latter, a priori,
unexpected behavior, we consider another experimentally
observed behavior that has not been analyzed previously



Page 2 of 17

while it was exhibited by very many composites. For this
purpose let us define as a “single-smooth” behavior the
case where equation (2) applies with the same single t
and xc values, for any subset of a given set of data. The
other possible behavior is that equation (2) is fulfilled but
with a different xc for different intervals of x such that
between these intervals there are “jumps” in the σ(x) de-
pendence. As systems of strong deviation from the “single-
smooth” (Eq. (2)-like) behavior we can mention granular
metals [10], metal particles embedded in polymers [11,12],
and various carbon allotropes embedded in a polymer. The
latter include carbon black [13], carbon nano fibers [14],
carbon nanotubes [15,16], graphene [17] and graphite [18]
composites. In the analyses of the corresponding many
data, the above deviations from the “single-smooth” be-
havior have been either overlooked or ignored completely.
In particular, the entire experimental data was fitted to an
equation (2)-like dependence with a single xc and with a
non universal t exponent, a fit that actually describes the
“single smooth” approximation of σ(x) to the measured
dependence. This approach appears then to conceal the
more detailed information on the active electrical network
in the studied systems.

In the work reported here we tried to explain the non
“single-smooth” experimental observations by presenting
a simple quantitative lattice percolation model and its ex-
tension to the case of non lattice systems where spheri-
cal conducting particles are distributed in an insulating
matrix. Then, we present a verification of our model by
comparing its predictions with the results of our measure-
ments on a granular metal and a carbon-black compos-
ite. We will also suggest a further extension of the model
that can be applied to other systems such as carbon nan-
otube (CNT) polymer composites. Our models are based
on the assumption of the presence of a hierarchy of the lo-
cal conductances in both, the lattice and the continuum.
Since the conspicuous feature of the models is a staircase
of equation (2)-like relations we will refer to it then be-
low in general, as the percolation staircase model. We will
call the specific model in which we assume interparticle
tunneling conduction, the tunneling percolation staircase
model. While following our basic staircase model [8] we
previously presented a simulation confirmation of it for
lattices [19], we do not know of a simple transparent an-
alytic formulation of the model or an extension of it to
composite like systems. In particular, we do not know of
any attempt to analyze experimental data that takes into
account the presence of a staircase in the observed σ(x)
dependence. Most importantly, no connection was made
between the reported universal (t = tun) or non universal
(t > tun) behavior of the conductivity and the observed
staircase like behavior. The purpose of the present article
is then to deal systematically with the staircase behavior
and to utilize the understanding that we derive to explain
the unexpected equation (2)-like behavior that is usually
observed in composites, in spite of the fact that all the par-
ticles in them are electrically connected by tunneling. In
turn we expect that our findings will provide a framework
that is common to percolation and hopping theories.

The structure of the paper is as follows. In Section 2
we present the simple physical basis of the percolation
staircase models and its manifestation in the tunneling
percolation problem. We do that by quantifying a very
simple lattice model that we have sketched qualitatively
previously [8] and by extending it to continuum systems.
In particular, we provide specific criteria by which experi-
mental results obtained on composites reveal details of the
conducting network within these systems. In Section 3 we
present experimental confirmations of the continuum ex-
tension of the lattice model that we developed in Section 2.
Finally, in Section 4, we evaluate the results of Section 3
and discuss possible extensions of the model to systems
of non spherical particles. This enables, in particular, to
explain the many data of conductivity stairs in systems of
CNT-polymer composites. Finally, we will be able to con-
clude that the observation of a percolation behavior with
a non zero percolation threshold in composites is always
associated with the presence of a cutoff or a hierarchy in
the values of the conductances of the conducting elements
in these systems.

2 Theoretical considerations and predictions

In order to present the basic physical idea of our approach
we start by considering a simple-general system that con-
sists of four types of local conductances gi with values
g4 � g3 � g2 � g1 and corresponding concentrations N1,
N2, N3 and N4. Now let us assume that N1 < Nc where
Nc is the concentration of the conductors that is needed
for the onset of a globally connected (i.e., percolation)
network. Obviously, the network of only the g1 conduc-
tors cannot conduct. Now let us assume that N1 < Nc

but N1 + N2 > Nc. In this case, the g1 conductors are
practically shorts while the g3 and g4 conductors (that
may be connected in all sorts of parallel configurations to
the combinations of g1 and g2 conductors) are practically
insulators so that they do not contribute significantly to
the global conductance, σ. Hence, in the system described,
the global conductance will be proportional to g2 [8,20,21].
Similarly, if N1 + N2 < Nc but N1 + N2 + N3 > Nc,
the global conductance will be determined by the value
of g3 while the values of the other gi’s will not be reflected
by the global conductance of the system. In general, we
conclude then that the smaller the sum of the Nis, the
smaller that is needed for the global network conductance,
the smaller the value of gi that will dominate this conduc-
tance. The above picture predicts a series of “down jumps”
in σ with the decrease of ΣNi(≡ N > Nc) that will take
place when, N1 = Nc, when N1 + N2 = Nc, etc. We call
the interval of N values that is dominated by the value of
one of the given local gi’s a stair.

To consider the above picture more specifically we ex-
amine a lattice where the number of the jth nearest neigh-
bors is zj, and the “total” number of its neighbors, up to
and including the nth neighbor, is Zn by Zn = Σzj. Let
us evaluate now the connectivity of the system when we
assume that only the first n nearest neighbors (1 � j � n)
are involved. The random occupation of the bonds with a
probability pb yields that the average number of occupied
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bonds, of the jth neighbors per site, will be pbzj . Corre-
spondingly, the total average number of occupied bonds
per site, including all the occupied bonds that are asso-
ciated with the first n nearest neighbors, is pbZn. The
dependence of the percolation threshold on Zn follows
simply the topological requirement that, for a given di-
mension, there is a universal number of bonds per site
Bc that is needed for the onset of percolation. The neces-
sary probability for the bonds to be occupied, in order to
achieve the onset of percolation, is then pb

nc = Bc/Zn [2].
We note in passing that in the classical percolation the-
ory one usually considers only the n = 1 case [1]. Fol-
lowing the increase of Zn with n > 1 (i.e., the involve-
ment of farther neighbors in the lattice) it is obvious that
a corresponding series of percolation thresholds, pb

nc, can
be obtained and that pb

nc < pb
(n−1)c. The above consid-

erations apply also to the site percolation problem since
the involvement of more participating neighbors for the
same p will yield a larger number of occupied bonds per
site. Hence, we have that the corresponding percolation
thresholds in the latter case, the pcn’s, will also obey the
rule that pc(n+1) < pcn [2,3,22]. Of course pc1 corresponds
to the classical first neighbor percolation problem and (for
the convenience of the following discussion) we define here
also pc0 as 1.

Let us consider now a hierarchy of the local-bond con-
ductors by assigning relatively smaller conductances to
the farther neighbors. In general, we can associate the lo-
cal conductance between a site and its nth neighbor, gn,
with their intersite distance, �n. In particular, in the inter-
esting case of tunneling, gn = g0 exp(−2�n/ξ), where g0 is
a constant and ξ is the tunneling decay distance [8,23].
In that case one can follow the global conductivity of
the lattice, σ(p), with the decrease of p, by noting that
for all n’s �n > �n−1 and assuming initially that for all
n > 1, �n/ξ � 1. The global conductance σ(p) for p in
the interval pcn < p < pc(n−1) could be expected [3], as
in other cases with a wide distribution of local conduc-
tances [8,20,21], to be dominated by gn. Thus the over-
all σ(p) dependence should have a conductivity “jump”
around each pcn, exhibiting a staircase dependence such
that between the pcn’s (i.e., in the p range within a “stair”)
a monotonous increase of σ with p will follow equation (1)
with the proper p − pcn and with a t that is equal to tun.

In the above we have used the term “dominating” con-
ductance intuitively and thus before a further presentation
of our staircase model let us dwell on this concept within
the framework of the lattice that we consider, from two
points of view. From the topological point of view the con-
ductors that are associated with the nth nearest neighbor
bonds are necessary for percolation within the entire p
range of the nth stair (pcn � p < pc(n−1)). This means
that we can have throughout this range various configu-
rations of conductors but there is no configuration that
will yield percolation without having in each conducting
path at least a single gn conductor, or a combination of
gn-only conductors, that will not be shunted by the gm’s
for 1 � m < n. The second aspect of the dominant con-
ductance, gn, is that it is assumed to have a value that is

much smaller than that of the other (1 � m < n) possi-
ble conductors in the system. It is obvious then that the
resultant conductivity of the system and its role as the
dominant conductance in a stair will be determined not
only by the topology but also by the gm/gn ratios in the
system. In general then, for a given system’s connectiv-
ity, the overall electrical conductivity of the system will
be determined by an additional constraint that the spe-
cial properties of the electrical conduction impose on the
topological network. In the electrical case this yields that
the “resultant” conductivity is essentially controlled by a
subsystem of the whole network. The effect of this con-
straint is manifested in particular when there is, as in our
model of conductors, a distribution of the values of the
local conductances, and this brings to “the physical idea
that (in the case of a distribution of the values of the local
conductances) the bottlenecks determine the overall con-
ductance of the network” [20,21]. In other words, the con-
straint imposed by the conductance value distribution on
the overall conductivity of the system leads to the selection
of a particular “dominating” electrical network from the
many topological equivalent networks that can be present
in the system. However, it was noted that this conclusion
“cannot be quantitatively valid for arbitrary conductance
distribution” [20,21]. In our case, the bottlenecks are the
gn’s since in the p-range of the nth stair there will be no
percolation without the gn’s and since these have the low-
est local conductance in the system. On the other hand we
do not know a priori if the assumption of the domination
of gn throughout a stair (i.e., that the resultant conduc-
tivity there Θn, is simply proportional to gn) is valid for
the lattice system that we describe. In particular, in our
model the inclusion of the nth nearest neighbors (i.e., that
pb

cn = Bc/Zn) means also the inclusion of all the nearer
neighbors, 1 � m < n (but not farther neighbors). Hence,
using the relation Θn ∝ gn, suggests that except for some
configuration-dependent factor the resultant macroscopic
conductivity, in a given stair range, is determined “only”
by its gn, while in the classical percolation theory the con-
ductivity of the system is determined by the average local
the system [3–5]. In the Appendix we discuss this point
in detail showing that the use of the σn ∝ gn relation is
well justified for the typical g(n−1)/gn ratios (103) con-
sidered in our model and experimental results throughout
this work. In passing we also note that the fact that the
gn conductors may be connected with other gn’s or with
gm’s in series or in parallel is accounted for by the univer-
sal value of the t exponent that we use below. The model
that deals with the electrical conductivity in percolating
systems and that essentially addresses this particular issue
is known as the links nodes blobs (LNB) models [1,3,23].
A brief introduction to this model and its consequences re-
garding parallel configurations of conductances are given
in the Appendix. Here, for the sake of simplicity of the
quantitative of the presentation of our model, we assume
then that Θn ∝ gn relation is indeed valid.

Turning to a quantitative description of the above
model let us estimate the macroscopic conductivity within
the nth neighbor stair where the conductivity is assumed
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to be dominated by the gn conductances as follows.
We approximate then the conductivity in this stair by
σn[(p− pcn)/(1− pcn)]t, where σn is the value of the con-
ductivity that would have been obtained for the corre-
sponding network of conductors if this dependence would
have been extrapolated to p = 1. While we know that
this approximation does not really hold for large p − pcn

values [1], this convenient normalization of the conduc-
tivity does not affect any of the semiquantitative conse-
quences of the model that will be concluded below. Ap-
plying our assumption regarding the dominance of gn in
the global conductance within the nth stair we write then
that σn = An(p)gn where An(p) is assumed to be a weakly
dependent function (in comparison with (p − pcn)t) of p.
The above assumptions enable us to express the conduc-
tivity in the nth stair by the percolation modified step
function:

Θn(p) =

{
σn[(p − pcn)/(1 − pcn)]t if p > pcn

0 if p < pcn.
(3)

While for each stair the conductivity is assumed then to
be dominated by the particular local conductance gn, the
contribution of the lower conductance stairs to the over-
all conductivity of a given stair has to be considered when
one calculates the “actually measured” conductivity of the
system. Correspondingly, the global-resultant conductiv-
ity in the mth stair, Gm(p), can be approximated by:

Gm(p) =
∑

Θk(p), (4)

where we sum over all the m � k � ∞ step functions. As
apparent from equation (3), with increasing n, the terms
in the sum become smaller as do the gn’s, and the σn’s. A
more detailed discussion and more refined expressions for
Θn are given in the Appendix.

Turning to the global σ(p), the consequence of the ap-
plication of equation (4) can be appreciated as follows.
The smaller the gm/g(m+1) ratio, the smaller will be the
corresponding “jump” of the global conductance. Also, as-
suming a priori a t = tun in equation (3) yields that for
p > pcm, but very close to pcm, the σ(p) dependence will
show some deviation from the universal behavior, while if
larger p’s in this mth stair are considered this deviation
(when best fitting is attempted) will be negligible.

To give a tangible description of our model let us con-
sider a lattice in which, either the occupation of the near-
est neighbors is enough for the onset of global conduc-
tivity, or, the occupation of both, the nearest and next
nearest neighbors is needed for the onset. We do that in
Figure 1, by examining a sketch of the above two scenar-
ios in a finite small section of an “infinite” square lattice.
The sites of the lattice are presented by the various dots
and circles in the figure. Now let us occupy the sites with
a probability p such that we have occupied (large circles)
and unoccupied (dots) sites. We define first the nearest
neighbor connectivity criterion as follows: two sites are
considered connected if they are nearest neighbors and oc-
cupied. Such connected pairs of sites yield bonds and each
bond has a given conductance (or resistance) assigned

Fig. 1. An illustration of a small portion of a square lattice
where some of the sites (large circles) are occupied. Two near-
est neighbors that are occupied yield a bond with a relatively
small resistance (thin resistor symbols). Two second nearest
neighbors that are occupied are connected by resistors with a
relatively high resistance (bold resistor symbols). If some of the
occupied sites (light-blue circles) are removed the network of
nearest neighbors will not yield a globally conducting system
while if the resistors between the second nearest neighbors are
also included the global network will conduct.

to it. The corresponding bonds in the system are denoted
in Figure 1 by resistor symbols. A similar consideration
applies to the second nearest neighbors. The hierarchy of
the local conductances is introduced then by assuming a
relatively large first nearest neighbor bond conductance
(relatively high-value resistors, thin resistor symbols) and
a smaller second nearest neighbor bond conductance (with
relatively high-value resistors, bold resistor symbols). As
seen in the figure, the nearest neighbor resistors constitute
a connected network between two opposite edges of this
small portion of the “infinite lattice”. Now let us reduce
the site occupation probability p by assuming that the new
network is the same as above, except that some (bright,
blue circles) sites are excluded so that the system of the
nearest neighbor bonds (or resistors) does not provide a
connected network. Yet, the inclusion of the conductances
associated with the second nearest neighbors, in addition
to the prevailing nearest neighbors, does still provide a
connected network. In this latter case the global conduc-
tivity will be determined by both types of resistors and
if there is a significant difference between their values the
high resistor (lower local conductances) will dominate the
global conductivity. We see then that in the infinite lat-
tice there will be well defined values of p and pc1, such
that for p > pc1 there is a global connectivity of the sys-
tem of nearest neighbor bonds while for p < pc1 there is no
such connectivity. However, the involvement of the second
nearest neighbors provides, for p < pc1, a continuous net-
work, that is dominated by the resistors of these neighbors,
and, again, this will hold for p values only down to some
threshold pc2 < pc1, for which the combined system of
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nearest neighbor and second nearest neighbor bonds pro-
vides a connected network.

Now let us consider the predictions of our quantitative
model that is given by equations (3) and (4) for the simple
case of the above infinite square lattice with a significant
hierarchy of conductors, as can be the case when the inter-
site conduction is by tunneling. To make the presentation
of this model as clear as possible we make some simpli-
fying assumptions in the choice of the model parameters.
Starting from the series of percolation thresholds, it is well
known [2] that the thresholds derived for the site percola-
tion problem are numerically close to the bond percolation
thresholds. For example, in the 2D (near neighbor only)
square lattice pc1 = 0.59, which is not too far from the
corresponding bond (near neighbor) percolation thresh-
old, pb

c1 = 0.5. Following that and the fact that the bond
percolation thresholds, pb

cn, have the much more topolog-
ically transparent numerical values [2,22] than those of
the percolation site problem [24], we “adopt” the bond
percolation values as presenting the “proper” site perco-
lation thresholds, pcn. The topological transparency fol-
lows the above mentioned simple fact that pb

cn = Bc/Zn

where Bc is the critical number of bonds (2 in 2D sys-
tems) [2], while for the pcn there are more complex ap-
proximations [24]. Hence, for the pcn values in the square
lattice illustration (up to n = 6 here) we use the corre-
sponding pb

cn = Bc/Zn series (n = 1, 2, . . . , 6) that is then,
1/2, 1/4, 1/6, 1/10, 1/12, 1/14. The important point to
note here is the shrinking of the widths of the expected
stairs, Bc(1/Z(n−1) − 1/Zn), with increasing n (where we
note that for the width of the first stair, n = 1, one has,
formally, to take Z0 = 2). Let us point out that the same
consideration applies for 3D lattices but, since the width
of the stairs is much larger in the 2D case (the Zn’s are
much smaller) we have chosen, for the sake of a clearer
illustration, to present our model on the square lattice
system.

Having defined the p-intervals, i.e., the stairs, by
the percolation thresholds, let us consider now the lo-
cal tunneling conductance associated with a given nth
nearest neighbor (or the nth shell of neighbors) gn =
g0 exp(−2�n/ξ) that dominates the network conductivity
in the nth stair. The corresponding contribution of the nth
stair conductance will be determined then, according to
equation (3) with σn = Angn. Now, assuming for simplic-
ity that the An values do not vary significantly with n we
can approximate the “down jumps” between the stairs i.e.,
between the σn values by gn/gn+1 = exp[2(�n+1/�n)/ξ].
In the square lattice example that we consider (starting
with the second stair, i.e., from n = 1), the corresponding
�n+1−�n increments, in units of the lattice constant a, are
0.4, 0,6, 0.24, 0.6 and 0.17. To evaluate these σn’s with the
increase of n we assume in our calculations that 2a/ξ = 10
and normalize σ6 to be 1. The interesting observation here
is that since the width of the stairs Δpcn(= pc(n−1) −pcn)
is reduced considerably with increasing n, the variation of
the global σ(p) dependencies will appear as dominated by
the decreasing gn’s rather than by the conducting network
(as in the LNB model, see the Appendix) variations of the
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Fig. 2. An illustration of the expected staircase behavior
of a normalized percolation tunneling conductivity in a 2D
square lattice. Both, the separate stair functions (Eq. (3), for
n = 1, . . ., 6) and their sum (Eq. (4), bold red curve) are shown
in the figure for the first six stairs. This illustration was derived
for 2a/ξ = 10.

classical percolation theory [1,3]. Indeed, as shown below
(in Fig. 3), this effect will be manifested by an apparent
non universal behavior i.e., by a t exponent larger than tun.

Having selected the parameters let us present now the
corresponding predictions of equations (3) and (4) in Fig-
ure 2. In this figure we tried to accommodate as many
stairs on the one hand, but to have as clear as possible
separation between them, on the other hand. To make the
behavior more reminiscent of composites that are 3D sys-
tems we have preferred (in spite of the 2D lattice that we
have chosen) to use the 3D value of tun = 2 for the plot of
the separate stairs according to equation (3). In the fig-
ure we show then the upper six conductivity stairs, i.e.,
the functions Θn for n = 1–6. Also shown is the envelope
function σ(p) (heavy red curve), which is determined in
the range of stair k by Gk(p) as given by equation (4).

In Figure 2 the behavior of σ(p) for p > pc1 is due
to the contribution of two parallel conductivity networks,
one of g1-only conductors (Θ1) and one of a network that
is made of a mixture of g1 and g2 conductances (Θ2). The
n = 2 curve represents then the extrapolation of the vir-
tual second stair behavior to the n = 1 stair regime. This
extrapolation is the contribution of the n = 2 percolation
network if the percolation cluster of the g1-only conduc-
tors is eliminated. Obviously since the two contributions
are in parallel they add up yielding the resultant “con-
ductivity envelope” in the first stair regime. Note that the
envelope is the overall system’s conductivity that will be
actually measured or simulated (concealing the relative
contributions of the two networks of which it is made).
We see then that (as also expected from the construction
of our model and as discussed in the Appendix) the ratio
of the σn(p)’s, for a given p farther above pc1, will be of
the order of g1/g2.

It can be seen that, due to the contribution of the
lower conductivity stairs, the resulting σ(p) dependence
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0.5                   1.67                    28307
0.48                 1.85                    13701
0.46                 2.03                    5937
0.43                 2.3                      1501
0.415               2.44                    1107  Best fit
0.38                 2.75                   2581

σ

p
Fig. 3. The analysis of the behavior of the normalized conduc-
tivity in the region of the first stair as derived by the applica-
tion of equation (4) to data such as the conductivity envelope
in Figure 2 but for 2a/ξ = 5.

deviates from the single Θn in each stair, mainly close
to the corresponding percolation threshold pcn. We also
see that the larger the conductivity jumps, the smaller
the effect of the n + 1 (lower conductivity) stair on the
conductivity of the nth (higher conductivity) stair. The
importance of the latter result is that the conductivity
contribution of the lower stair affects the t values that
will be derived for the following higher conductivity stair.
This is since the lower conductivity stair causes an up-
per shift of σ(p) around pcn, and this leads to an appar-
ent lower pcn value and a corresponding apparent larger
t value. This behavior is demonstrated in Figure 3 where
different pcn values are tried in order to fit the σ(p) (or
the envelope G1(p) at the first stair, with data that were
obtained as in Figure 2, but (for clarity) with 2a/ξ = 5.
We see that the best fit (see the reduced chi square values)
that is presented by the solid (blue) curve in the figure,
yields now a value of 0.415 for pcn and 2.44 for t, rather
than the “original” imposed pcn = 0.50 and t = 2.0 values.
Hence, the effect of the participation of the smaller gn’s
as p decreases is to shift the percolation threshold for a
given set of data to lower values than the value that would
have been observed without the participation of the lower
gn’s. In order to account for an equation (1) like behavior
for such a set of data the t value must increase. This is
since the corresponding p− pc interval has increased then
(note that all the p’s are smaller than 1). The end result
is that the increase of the t value beyond its universal
value is associated with the presence of smaller gn values
below the p range of a given set of data. This decrease
of the gn values as p decreases is however the basis of
the a non universal behavior in the tunneling percolation
problem [3,5]. In particular, if the observed decrease of the
dominating g values (with the decrease of p) in the system
can be presented by g ∝ (p − pc)u for some pc value, we
get that t = tun + u in accord with the general theory of
the non universal behavior [3,4]. We conclude then that
when t values somewhat larger than tun are derived from
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Fig. 4. The fitting of the conductivity envelope shown in Fig-
ure 2 to an equation (1) dependence.

experimental data, by fitting them to an equation (1)-like
behavior, they simply reflect the non negligible contribu-
tion of the smaller conductors in the system. In passing we
note that the presence of the smaller (non dominant) gn’s
in a given (n + 1) stair is usually ignored in many pre-
vious analyses of experimental data. This is apparently,
since the lower conductivity stair, where these smaller gn’s
are dominant, was not detectable. On the other hand, as
shown here, the contribution of these gn’s to the higher
conductivity stair that is revealed by the data may be
important.

In general, the results of computer simulations and
experimental measurements are given essentially by the
data points of an “envelope” such as the (bold, red) curve
shown in Figure 2. However, the analysis commonly used
in the literature is to fit the data to a single stair de-
pendence by the application of equation (1). This kind
of analysis, that ignores the deviations from the smooth
equation (1)-like curve, yields a single pc and a single t. For
example the best fit of the data points of the “envelope”
in Figure 2, to a single equation (1) dependence yields, as
shown in Figure 4, a percolation threshold of pc = 0.053
and a large t = 8.7 value. This behavior confirms the sug-
gestion made above that while the individual stairs may
exhibit a universal behavior (or a behavior close to it)
the general trend of decreasing gn’s leads to the observed
non universal behavior. In particular, since t > tun, we
can account for this decrease of the gns as yielding the
non universal behavior when the “effective” gn behaves as
gn ∝ (p − pcn)u, our case u ≡ t − tun = 8.7 − 2 ≈ 6.7.
Moreover, this u value can be mapped onto the original
f(g) = (1 − α)g−α distribution function of Kogut and
Straley [4] with α = u/(1 + u) = 0.87. We also note that
while the best fit of the limited data of the envelope ex-
trapolates to pc = 0.053, the “true” threshold of the tun-
neling system is the one that would have been obtained
by equation (4) for k → ∞, i.e., pck = 0. Fitting the enve-
lope of the data in Figure 2 with this pc = 0 value yields
(as discussed following Fig. 3) to a somewhat larger non
universal value of t (≈11).
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Fig. 5. The data points of the conductivity envelope in Fig-
ures 2 and 4, as a function of the distance between occupied
sites, that is presented here by the p−1/2 scale of a 2D lattice.

Following the non universal behavior that we obtained
by taking the p → 0 limit let us turn to examine the
tunneling hopping prediction in that limit of dilute site
occupation. It is known that the distribution function of
the interparticle distance when applied to 2D in hopping
theory [23] yields that σ ∼ exp(−ωp−1/2) (where ω is a
constant [8,23]) and thus we also examined whether that
behavior will be manifested by the envelope shown in Fig-
ures 2 and 4. For the examination of the asymptotic be-
havior of this envelope as p → 0 we plot in Figure 5 the
data points of the envelope as a function of the inverse
density of the occupied sites in the 2D lattice, p−1/2. The
straight line obtained as p → 0 does indeed indicate that
p = 0 is the ultimate threshold of the system and that the
hopping theory of randomly implanted sites applies in this
dilute limit of the lattice. We conclude then that the ba-
sic physics that determines the non-universal-like and the
hopping-like behaviors in this dilute limit (p → 0), is that
the σ(p) behavior is dominated by the decrease of the con-
ductances rather than by the decrease in the connectivity
of the system [8].

The four predictions of our above tunneling staircase
model that were illustrated in Figures 2–5 are then: (a)
each stair is expected to be practically described by equa-
tion (1) with its proper pcn, and, for large local conduc-
tance jumps, with t = tun. The smaller the jumps, the
larger will be the effect of the lower conductivity stair
on the critical behavior of the subsequent higher con-
ductivity stair. This leads to a lower fitted pcn and a
larger fitted value of t with respect to tun. (b) The con-
ductivity ratio between the stairs will be of the order
of gn/gn+1 = exp[2(�n+1 − �n)/ξ]. (c) The participation
of lower and lower conductances as p → 0 can be pre-
sented by a gn ∝ (p − pcn)u dependence where pcn is
the corresponding threshold. Such a dependence yields the
non universal behavior with t = tun + u. (d) The “true”
percolation threshold of the system is at p = 0. As in
the hopping transport the closer the p to 0, the more
hopping-like the system gets. This behavior, that is well

demonstrated by a p−1/2 dependence in 2D or the corre-
sponding p−1/3 in 3D, is due to the fact that when the
lattice site occupation becomes very dilute it is essentially
that of randomly implanted sites. One should note here
that this result follows the fact that in the p range where
this behavior is found, the variation in the gn’s (that is
manifested by u > tun) is much larger than the variation
of the conductivity due to the change of the connectivity
(that is manifested by t = tun) with the decrease of p.

The extension of our lattice tunneling-percolation
staircase model to systems of conducting spheres that are
embedded in an insulating matrix appears to be relatively
simple. In that case the hierarchy of the local conduc-
tances, gn, will be determined by the radial distribution
function (RDF) of the particles distances around a refer-
ence particle [25]. Of course this function depends on the
assumptions made in the simulation models [26–28] or on
the preparation conditions of the systems. In particular,
in real composites the RDF depends on the value of x,
on the components of the composites and on the fabri-
cation process. For simplicity, we distinguish between two
cases assuming that in both of them the values of the local
conductances, gn, decrease monotonically with the inter-
particle distance. In the first case, the RDF has well de-
fined narrow peaks, and in the other, the RDF is a smooth
monotonic function. Let us consider then the conductivity
in these two cases when the interparticle conduction is by
tunneling. In the first case the peaks in the RDF of the
interparticle (surface to surface) distances are the equiva-
lents of the �n’s defined for the lattice. Indeed, distinguish-
able peaks of the RDF represent clear shells of near neigh-
bors [25] and as the density of the spheres increases, the
spheres arrangement approaches that of a lattice [27,28].
Hence, a corresponding hierarchy of local tunneling con-
ductances, associated with the interparticle distances �n,
is likely to occur. Following our discussion on lattices we
expect then conductivity stairs in these systems. In partic-
ular, the magnitude of the conductivity “down jump” be-
tween the n and the n+1 stair in σ(x) (i.e., σm/σ(m+1)) is
expected, as for lattices, to be given by exp[2(�n+1−�n)/ξ].
Turning to the second case of no peaks, or relatively wide
peaks, the distribution of the �n values (that determines
the distribution of the gn’s) will lead to a smooth (single
stair like) σ(x) dependence which is actually the envelope
of the hardly distinguishable or quasi continuous series
of stairs. Following our predictions for the lattice model
this may also lead to a deviation of the value of t from its
universal value in the σ(x) dependence. Thus, one will ob-
tain, computationally or experimentally, a single universal
(t = tun) stair, or a single-like stair with a t ≥ tun value.
Having these guidelines and the above (a)–(d) predictions
will enable us to understand the computational and ex-
perimental results that are obtained for various composite
systems.

3 Experimental considerations and results

As mentioned in the introduction there are many sys-
tems [10–18] in which conductivity stairs have been found
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Fig. 6. Our experimental results of the electrical conductivity
dependence on the silver fractional volume content in granular
Ag-Al2O3 composites. The fitting of the data to equation (2)
for the three stairs (1, 2, 3) and the corresponding fitted t-
exponents are also shown. In the figure we also illustrate the
well-known shell structure of near neighbors in a three dimen-
sional ensemble of hard spheres. The circles represent the av-
erage position of the first, second and third nearest neighbor
shells.

experimentally but have not been analyzed, accordingly.
These systems are of different complexity and the rela-
tion of each of them to the simple model suggested in
Section 2 is yet to be determined. It is apparent that sys-
tems of spherical conducting particles that are embedded
in an insulating matrix are the most reminiscent of our
simple model and thus would be the most convincing ones
in providing evidence for the validity of the model.

In trying to obtain convincing experimental evidence
for the existence of a percolation-tunneling staircase we
looked for a system that consists of spherical or nearly-
spherical conducting particles so that the predictions ((a)–
(d)) of the lattice model presented in Section 2 can be
tested. However, before choosing such a system we noted
that the theoretical calculations of the RDF of non touch-
ing collections of hard spheres, as illustrated schematically
in the inset of Figure 6, seem to put a severe experimen-
tal constraint that in practice does not enable to mea-
sure more than a couple of stairs. This constraint is that
the distance between the RDF peaks [23-26] should not
be too large compared to the tunneling decay length, ξ,
which is of the order of 1 nm [29–31]. If this condition is
not met, the measurement of the lower conductivity stairs
will be quite difficult since it is associated with very high
tunneling resistances to the farther neighbors. Thus we
concluded that the predictions of our staircase model can
be tested conveniently only in systems with particles size
that is of the order of a few nm’s.

The system that seems to fulfill the latter requirement
is that of granular metals [10,32] for which samples of
small particles, that are roughly of the same size [33], cover
almost the entire x range and for which the existence of
tunneling between the particles is well established [10,32].
However, as far as we know, no more than two stairs

have been identified in those systems and the first one
is usually attributed to particles coalescence [10,32–34].
Hence, a granular metal, for which at least three stairs
are observed, seems promising for the confirmation of the
predictions of Section 2.

Granular metal systems of nearly spherical metal par-
ticles embedded in an insulating matrix are relatively sim-
ple to prepare by the co-sputtering method [10,32–37].
This method has the advantage that it enables to pre-
pare a quasi continuous set of samples that differ by rel-
atively small increments of x where x is clearly propor-
tional to the concentration of the grains. The challenge
for the present work was then to prepare an appropriate
granular metal i.e., a one for which we could expect at
least three peaks in the RDF that will lead to the obser-
vation of three conductivity stairs. Following these con-
siderations we noted that both Ag-SiO2 [35,36] and Ag-
Al2O3 [37] composites appear to consist of well separated
grains that form near-neighbor like shells. The Ag-Al2O3

system seems, however, to have the advantage of consis-
tency with the RDF models that usually assume equal
size spheres [26–28]. This is since the Al2O3 matrix (for
non annealed films [33]) tends to keep the average size of
the metallic grains, 5.2 ± 1.8 nm [37], essentially indepen-
dent of x in the interesting range of 0.1 < x < 0.4 [35–37]
which is below the grains coalescence transition. Hence,
the first, second and third nearest neighbors shells in the
Ag-SiO2 [35,36] and Ag-Al2O3 [37] composites are remi-
niscent of those of the ideal models of spheres where the
RDF has peaks [25]. Moreover, since in the granular sys-
tems of noble metals the first percolation thresholds are
at relatively low x (<0.3) values, it may be that the first
stair is already associated with tunneling, in contrast with
the typical higher x values for the coalescence associated
transitions in other granular metals [10,32]. In fact, the
available structural data in references [35,37] show that
the interparticle (surface to surface) distance to the first
neighbor shell is of the order of 1–2 nm while the distance
to the second neighbor shell is of the order of 5–6 nm
and to the third neighbor shell it is 10–12 nm. This sug-
gests that the σ(x) dependence is not too sensitive to
the assumption whether the first shell results from coa-
lescence (�1 = 0 and g1 = g0) or from a tunneling conduc-
tance between the nearest neighbors (�1 = 1–2 nm and
g0/e2 < g1 < g0/e, where e is the base of the natural
logarithms). Hence, the behavior of the first stair in these
systems may provide additional support to the model (in
addition to the behavior expected from the second and
third stairs). In fact, the assumption that a first stair in
those composites can be approximated by the tunneling
model is further supported by the two conductivity stairs
that have been observed [11] in systems of metal grains
embedded in a polymer, where there is definitely no coa-
lescence of particles.

In contrast with all the above considerations that
seem to be in favor of examining the above granular sys-
tems [35,37], we noted that the observed shells of the
RDF peaks in these systems appear for x < 0.4, while
in the many computations of the RDF of ensembles of
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spheres [26–28] the conspicuous peaks appear for denser
ensembles. Since a priori there may seem to be some dis-
agreement here we suggest that there is a good reason for
the slight discrepancy between the model computations
and the actual structure of the granular composites. In
the computations, the models used were of particles that
are dispersed under equilibrium or non equilibrium (e.g.,
random sequential addition) conditions, while in the gran-
ular metals the possible arrangement of the particles fol-
lows the very different process of particles nucleation and
growth. Trying to evaluate the effect of the latter process
on the spatial distribution of the grains, we found that
there is no derivation or a discussion of the RDF for co-
sputtered metal-insulator composites. This is in spite of
the fact that there are quite a few studies and interpreta-
tions [38–40] of the corresponding processes in metal-only
deposited particles and even in those deposited by sput-
tering. Since this material issue is far beyond the scope
of the present work and since we are concerned here only
with the outcome of the deposition process i.e., the ex-
perimentally observed RDF in the granular metals of in-
terest [35,37], we do not elaborate further on this issue.
The important observation from the point of view of the
present work is that, in both, Ag-SiO2 [35,36] and Ag-
Al2O3 [37] systems, the above peaks in the neighbor-shells
distance distribution and the observed percolation tran-
sitions in them, take place in the x < 0.3 range. This
observation strongly suggests that the two are related in
accordance with our expectations.

Following the above considerations we have co-
sputtered Ag-Al2O3 samples under similar conditions to
those used by other authors [10,36,37] and by us [34,41]
for depositing various granular metals in general [32,33],
and Ag-Al2O3 [37] in particular. As in our previous works
with granular metals we deposited 1 μm thick films and
the electrical conductivity measurements were carried out
in the (two or four probe) coplanar configuration [41]. In-
deed, as exhibited in Figure 6, we were able to find three
clear conductivity stairs fulfilling the predictions of the
lattice staircase model as listed in Section 2. First, the
values of t (as marked in Fig. 6) of the upper two stairs
are close to (but somewhat larger than) the universal value
tun, and the corresponding thresholds of the percolation
transitions take place at x values that are very close to
those of other granular metals where the metal was Ag
or Au [10,32]. Second, the conductivity “jumps” between
subsequent stairs are of the expected orders of magnitude,
if we assume that ξ ≈ 1 nm [29–31], as follows. Taking
�1 = 1–2 nm and �2 = 5–6 nm (see the above structural
data), the expected ratio between the values of the local
conductivities of the first (1) and second (2) stairs will
be (g1/g2 = exp[2(�2 − �1)/ξ]) ∼ 103. Considering then
the proportionality between the global conductivity (σn)
and the dominant local (gn) conductance of the nth stair,
we expect from Section 2 that σ1/σ2 ∼ g1/g2 where the
σn’s are taken at a common x (but far from the percola-
tion thresholds). Indeed, this is consistent with the data
in Figure 6, where the corresponding conductivity ratio is
of the order of 103. Similarly, the same expectation of 103

is also fulfilled by the ratio of the conductivities of the
second (2) and third (3) stairs, since the average interpar-
ticle distance between the second and the third neighbors
is also about 5–6 nm [37]. Third, if one tries to fit the three
data points (that we managed to achieve in our samples
for the third stair) to equation (2) one gets a value of
t ≈ 10, which is (as we concluded above for lattices) sim-
ply indicative of the dominant role of the decrease in the
gn values as x (or p), approach the dilute limit. Hence, the
corresponding σ(x) dependence appears as a single “non
universal” (t > tun) behavior [4,5,42]. Fourth, high t val-
ues translate, as we have shown in Figure 5, to a good
agreement with the hopping model. Of course, we note
the fact that we have here only three data points for the
third stair does not allow us to demonstrate convincingly
the expected high t and hopping like behavior. However,
a more convincing evidence for this prediction will be pro-
vided below.

As pointed out in the introduction there are many
systems where conductivity stairs are observed experi-
mentally but their structure is quite different from that
of granular metals and, correspondingly, from the very
simple model that we proposed in Section 2. While one
can think of a more special extensions of our model (see
Sect. 4) we would like to widen here the base of our simple
model to other systems of spherical particles but for which
a hierarchy of the tunneling conductances is dominated by
the microstructure of the insulating matrix rather than
by the global RDF of the conducting spheres. As will
be shown below this scenario is of particular relevance to
carbon black polymer composites which are a prominent
example of the most studied electrically conducting com-
posites [7,13,34,41]. In these composites (unlike the exam-
ple of granular metals) the size of the conducting parti-
cles is very large compared to the tunneling distance [34].
Hence, only the first near neighbors (say, along a given
direction from the reference particle) are within the tun-
neling range and only they can contribute significantly to
the global conductance. With the increase of x in such
a system, the density of the particles increases and the
average nearest neighbor tunneling conductance will also
increase leading to the increase of the global conductivity.
If the distribution function of the distance between a par-
ticle and its neighbors in the first shell, h(r), is “smooth”
(monotonic and having a monotonic derivative), we expect
a “simple-single” σ(x) dependence with no stairs and an
exponent t, that depends on h(r) [3,5,42,43]. Hence, in
the ideal case of a smooth h(r), as usually found in cal-
culations or simulations [44,45], no stairs are expected.
However, for some real composites, in particular for those
that are prepared by melt molding of polymers, a local
modification of the h(r) function may occur due to some
friction [5,15,16] and other interactions [46,47] between
the particles and the polymer. In this case two particles
may be separated by a few discrete polymer layers such
that each layer is of the order of a nm. The layers that en-
capsulate the individual conducting particle will have then
a nm scale width distribution [46–49] that is superimposed
on the h(r) distribution function. Thus, the discreteness
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Fig. 7. The CB volume fraction dependence of the electrical
conductivity in CB-polymer composites in which the CB par-
ticles are essentially spherical. The curves show best fits to the
data, for each of the four distinct stairs, in the staircase. The
corresponding stairs parameters are given by the table in the
inset.

of these features may be reflected in the observed behavior
of σ(x). Following this possible scenario we turned to care-
fully examine the σ(x) dependence of a carbon black poly-
mer composite in which the carbon particles are nearly
spherical with a diameter of 250 nm [43,50].

The composite samples used in our measurements were
prepared and measured as previously described [43,51,52].
The results that we obtained on three sets of samples were
very much the same. In Figure 7 we present the σ(x) de-
pendence that we obtained on one of these sets. As shown
in the figure we can extract from this dependence four
stairs of relatively small magnitudes. We note that while
the total number of data points that we have is relatively
large and dense in comparison with other relevant works,
for each of the distinguishable stairs (see below) we have
only three data points and thus we cannot extract ac-
curate t values for them. However, we fitted (using the
least squares criterion) the data for each stair by an equa-
tion (2) like behavior and, as given in the table within the
figure, we got t values that are very close to the 3D uni-
versal 1.7–2.0 value. The fits that we show indicate that it
is possible to associate the presented data with separate
stairs.

Of course, at first sight, there is a difficulty involved
in the analysis of the data and their interpretation as sug-
gested by the curves in Figure 7. This is the possibility
that the stairs in the figure simply reflect some fluctua-
tions in the measurements. To eliminate this doubt and
to convincingly show that the data reflect a genuine prop-
erty of the tested composites we have carried out detailed
measurements of the σ(x) dependence of the same set of
samples but by the completely different method of mi-
crowave transmission through the samples [53]. We have
found that indeed the results of these latter measurements
can be fitted, within the resolution shown in Figure 7, by
stairs that have the same thresholds xc that we observed
in our dc conductivity measurements (as listed in the table
within this figure).

Establishing this experimental amenability of our data
analysis in terms of stairs let us examine the results shown
in Figure 7 in light of the about 1 nm thick polymer
layers that are known to be formed around particles in
such composites [11,47,48,50,54]. In particular, the wrap-
ping [55,56] or coating [57] of particles by the polymer
elements, that can be as small as 0.4 nm [58], suggest
the formation of thin polymer shells around the conduct-
ing particles. It was even suggested that the thickness of
the polymer layer between the particles is independent of
x [47]. Also, there are various indications for the forma-
tion of subsequent polymer layers with different densities
and possible different properties that may provide various
kinds of tunneling barriers [47,59]. On the other hand,
there are many indirect experimental results that suggest
the dominance of a nm-distance related tunneling con-
duction mechanism in such composites. For example, the
temperature dependence of the conductivity [54] and the
well known electrothermal switching effect [60] are well
explained by such tunneling conduction. Hence, it is not
impossible that several “quantized”, nm thick, polymer
layers (“onion like”) form around a CB particle and thus
a series of different tunneling barriers separate between
the near carbon particles. All this may correlate well with
the almost equal and small stairs that we observed in Fig-
ure 7. Correspondingly, the variation or the jumps of the
dominant conductances is at least an order of magnitude
smaller than expected from the peaked RDF case that we
encountered for granular metals.

Finally, let us consider the best fit to the entire data
that were presented in Figure 7. This fit represents es-
sentially the σ(x) dependence that is expected from the
smooth two particles h(r) function dependence that fol-
lows the well known (structure less) distribution of the
near neighbor interparticle distances [44,45]. As we have
discussed previously in detail [5,43] the latter function
yields a non universal behavior of the conductivity. Indeed,
fitting the entire data in Figure 7 to equation (2) we find
that in accordance with our expectation ((c) in Sect. 2),
t ≈ 11 (or u ≈ 9) and xc = 0.3. Not less important is
the experimental verification here of the prediction ((d) in
Sect. 2) made following Figure 5, that the non universal
behavior in the tunneling-percolation theory [3,5] reflects
the behavior expected from hopping theory [23], in par-
ticular when the local conductances decrease in a similar
manner with decreasing x in the two theories [5,23,42,43].
This verification is demonstrated here, in Figure 8, by
plotting the data of Figure 7 in accordance with the hop-
ping like, σ ∼ exp(−ωx−1/3), dependence [8,23]. These
results fulfill then our two expectations for a high t value
and a hopping behavior, for which the data in Figure 6
was not as convincing.

4 Discussion

The observation of a percolation behavior when there is
a finite tunneling conductivity between any two particles
in a system (rather than a contact with a constant resis-
tance and only between their nearest neighbors, as in the
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Fig. 8. The experimental data points of the conductivity in
Figure 7, as presented by their dependence on the inter particle
3D distance scale of x−1/3.

S&Z model [6]), is not trivial [7]. Our work enables then,
beyond a better understanding of the electrical conduc-
tance in composites, to find an answer to the fundamental
question that was raised in the introduction, i.e., how is it
that the presence of tunneling does not eliminate the per-
colation critical-like behavior? For answering this question
let us summarize the relevant conclusions that follow our
staircase model. We saw that a single-smooth equation (2)
like universal percolation behavior can be observed only
when there is a single dominating local conductance value
in the system throughout the studied x regime. In sim-
ulations, this is a result of the cutoff in the maximum
interparticle distance that is taken into account, and in
the experiments, this is a result of the limited global con-
ductivity that can be measured. If there is an hierarchy
of the local conductances and the corresponding global
conductance is measurable in an x regime, within which
the dominating local conductance varies, a conductivity
staircase will be observed.

When the hierarchy is determined by interparticle dis-
tances, farther and farther neighbors are needed for the
onset of percolation with the decrease of x. Since for tun-
neling the charge transfer probability decreases monotoni-
cally with interparticle distance, the dominating local con-
ductance that must be involved for the onset of global
conductivity in corresponding systems will become smaller
and smaller. Hence, conductivity stairs such that each is
characterized by its percolation threshold and its domi-
nant local conductance will be obtained as a function of x.
The more dilute the system, the denser will be the series
of stairs and the fitted conductivity to their envelope will
have an apparent non universal behavior. On the other
hand, a hopping like behavior, well known for randomly
distributed dots [23], is expected in the corresponding di-
lute system limit. In fact, we have illustrated that even if
one starts from the discrete lattice percolation approach
(as in Fig. 5), when the system becomes dilute or the

dominant local conductance decreases continuously with
decreasing x (as in Fig. 8), the behavior does become of
the hopping type. We see then that hopping is always the
dilute limit of tunneling percolation and in systems where
the interparticle distance distribution is monotonic and
continuous they are essentially the same. Correspondingly,
our finding that in the tunneling percolation problem the
“true” threshold is always at p (or x) = 0, shows that the
finite percolation thresholds observed in computations of,
or measurements on, composites, are a result of the lim-
ited conductivity data (i.e., only above a given finite x
value) that are usually available. The corresponding σ(x)
dependence that is usually observed provides then only
a part of the full connectivity-conductivity picture of the
system. On the other hand, analysis of the given data in
terms of the conductivity staircase, i.e., in terms of the
built in hierarchy of the local conductances in the system,
gives a more detailed picture of the percolation network.
The answer to the question of why a percolation like criti-
cal behavior is observed in tunneling percolation systems,
is that one usually monitors the conductivity in the rel-
atively high density (and larger conductivity) first stair
regime. Note that this regime is usually wide enough so
that the observed critical behavior is not masked by the
contribution of the lower conductivity stairs. In particu-
lar, this analysis in terms of the first stair, explains the
rather general observation (as emerges from the statistics
over numerous data on all types of composites [9,15,16])
that the conductivity values of the critical exponents, t,
reported in the literature are quite narrowly distributed
around the universal value of tun. On the other hand, while
relatively few (in comparison with that corresponding ma-
jority), there are still many works in which the values de-
rived for t deviate significantly from tun [9,15,16]. These
t > tun values are well understood now to describe the en-
velope of the first or the first few conductivity stairs when
the effect of lower stairs is not negligible (as in Fig. 3) for
the measurable x range.

In Section 1 we mentioned the very many systems in
which conductivity stairs were observed [10–18] but have
not been analyzed accordingly. Many of these systems
consist of non spherical conducting particles so that our
models based on spherical particles do not simply account
for them. However, the fact that for such systems stairs-
like behaviors have been observed can be explained by
the principle stressed throughout this article, i.e., that in
such systems a hierarchy of the local conductances must
exist. Of these systems there is quite a great interest in
composites in which the conducting particles are carbon
nanotubes (CNTs) [15,16] or metallic nanowires [61]. For
such systems two scenarios have been suggested. In one,
the local conductances are determined by tunneling [58]
or by the resistance [62] between two “touching” particles,
while in the other, the dominating local conductances are
associated with the segments between subsequent contacts
of two particles along a third one [63]. As one would expect
a priori, and as we have demonstrated by corresponding
simulations [64,65], in both cases an association of the
global conductance with (practically [65]) constant values
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of the local conductances provides a good approximation
for the system and thus no conductivity stairs are antic-
ipated. However, surprisingly, in numerous composites of
elongated particles such stairs are observed [14] and thus
the implied hierarchy must be a scenario that is not asso-
ciated with the interparticle transport mechanism. Noting
that the effect of the particles dispersion due to processing
is well known to determine the electrical properties of such
composites [15,16,66] we suggest that in those composites
the hierarchy of local conductances follows possible aggre-
gation configurations such as the ones suggested by Hu
et al. [66].

To illustrate a simple aggregation configuration that
can result in conductivity stairs let us assume a perco-
lation dispersion model where two types of local con-
ductances are randomly implanted in an insulating ma-
trix. For this version of a dispersion model we adopt the
structure of the system that was experimentally found by
Maaroufi et al. [67] for a CNT-polymer composite. They
found that their composite consists of a distribution of
isotropic CNT aggregates as well as individual non aggre-
gated CNTs. Let us assume accordingly that the aggre-
gates of the CNTs act as high conductivity spheres (that
have a diameter which is of the order of the length of the
single CNTs) such that the local conductance between two
of them, ga, is mainly due their touching. On the other
hand, the conductances of a single CNT, or between two
“touching” single CNTs or between a single CNT and an
aggregate that are “touching”, are of the order of gs, such
that gs � ga. Therefore, the conductance between two
non touching aggregates that are “bridged” by a single
CNT, is also of the order of gs. Let us denote the con-
centration of the aggregates by Na and the concentration
of the individual, none aggregated CNTs, by Ns. We as-
sume (as in the very simple model described in Sect. 2
and the general lattice model in the Appendix) that for
the onset of percolation we need at least Nc particles (ag-
gregates and individual CNTs) in the system and that
for high enough x values we have that Na > Nc (or xc),
so that the contribution of the gs’s to the global conduc-
tance is negligible. It is clear then that for x values lower
than xc a global conductance can be achieved only with
the participation of some of the gs’s. Correspondingly, the
conductivity of the first (high conductivity) stair will be
determined by the conductance of the aggregates (i.e., ga)
while the conductivity of the second (lower conductivity)
stair will be dominated by the conductance of the individ-
ual CNTs, gs. The onset of percolation of the latter stair
will be then at a proper combination of both the aggre-
gates and the individual CNTs that is enough to provide
the connectivity of the system. This model of two stairs
can be extended to more than a single size (or a single type
of) aggregates and thus, in general, several conductivity
stairs may result.

This model is strongly supported by recent computer
simulations of a somewhat more complicated model by
Hu et al. [66]. These authors simulated samples of a few
compact CNT aggregates and found that the increase
of x yielded steps in σ(x). Hence, conductivity stairs as

obtained experimentally [15,16] can form when the aggre-
gates configurations or the dominant conductance in them
vary with the increase of x. We also note that, unlike in the
simple tunneling staircase model of Section 2, the “jumps”
of the global conductivity between stairs, in the presently
discussed dispersion models, do not have to be large since
the magnitudes of the “jumps” are determined primarily
by the aggregates configurations that form in the CNT-
polymer composites during the melt molding. In fact, the
stairs can be “smeared out” if the dominating aggregate
or the dominating configuration vary monotonically and
continuously with increasing x. However, as in the tun-
neling staircase model we suggest that the apparent non
universal behavior observed in many of these systems is
due to the analysis of the corresponding “envelope” of
the measured σ(x) rather than with a continuous diverg-
ing distribution of the conductors, as we have seen here
for the tunneling-percolation scenario in the carbon black-
polymer composites.

Finally, while we discussed in detail the tunneling per-
colation staircase and mentioned briefly its possible gen-
eralization to the dispersion percolation staircase, other
types of percolation staircases or a combination of them
seem to be possible. In fact a system that does not fit
the models of tunneling or aggregation is that of ion im-
planted silicon where the conductivity was measured as a
function of the carrier concentration [68]. In that system
two stairs were observed and the percolation behavior of
t = 2 was deduced for the second, lower conductivity stair.
This further suggests the generality of our model as well
as its ability to explain many behaviors in terms of the
dominant conductivity network in percolation systems.

In conclusion, in this work we have considered a lat-
tice model in which the intersite conduction is by tun-
neling. We have used this model to analyze the electrical
behavior of a granular metal and a carbon black polymer
composite and we have suggested a percolation dispersion
model for composites in which the conducting particles
(e.g. CNT, metal nano-wire or graphene) are anisotropic.
In our study we have shown that a staircase in the global
conductivity dependence on the conducting phase content,
σ(x), in composite materials, is a general phenomenon.
Two cases were described in some detail. The case where
there is a peaked distribution of interparticle tunneling
distances and a case where the configurations of parti-
cles changes with x. We made then a connection between
the percolation threshold and the critical exponent of the
conductivity which has not been considered previously
in the tunneling percolation problem. This enabled us to
draw three important classification criteria for the under-
standing of the σ(x) behaviors in composites. First, if a
single universal behavior of the conductivity is observed
the composite either consists of a single dominant local
conductance or the contribution of the possibly present
smaller conductances is beyond the computing or exper-
imental resolution. Second, if stairs are observed in the
global conductivity they are due to the presence of a hier-
archy in the values of the conducting elements that consti-
tute the percolation network. Third, if only a single stair
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with a non universal behavior is observed there is a contin-
uous monotonic distribution of decreasing conductances in
the system. Finally, and most importantly, as x → 0, the
dilute nature of the composite can be well described by
both, a non universal percolation behavior, with an x = 0
threshold, and a hopping like model.
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Appendix: The network of minimal
resistance

The physical picture that we utilize for describing the
evolution of the overall electrical conductivity in a lat-
tice, with the increase of the bond percolation probabil-
ity pb, as well as for the justification of the application
of equations (3) and (4), is that of the well-known links
nodes blobs (LNB) [1,3,23] model. Briefly, the percolation
backbone is the electrical conducting part of the infinite-
size percolation cluster [1,2]. The bonds (or resistors) that
make the backbone are the bonds through which there is
an electric current if a bias is applied to the system. This
backbone can be envisioned as consisting of a network
(say, a square or a cubic lattice) of parallel “links” that are
made of “singly connected bonds” (SCBs) and blobs, such
that the “links” intersect at “nodes” that define the con-
ducting net [1,23]. The SCBs are bond-resistors that are
not by-passed by other resistors that belong to the same
link, and the blobs are bunches of resistors such that some
resistors or groups of them are connected in parallel with
other resistors or groups of them. The length of the links
are easily envisioned to be of the order of λ ∝ (pb −pb

c)
−υ,

the average size of the finite clusters of connected bonds,
since the “holes” in the infinite backbone net can encap-
sulate only finite clusters, and the diameter of these finite
clusters is distributed around λ [1]. Here, pb is the bond
occupation probability, pb

c is its value at the percolation
threshold and υ is the correlation length exponent.

Turning to the expected resistance of the cubic LNB
network, let us assume that the resistance of a link is Rλ. If
a cubic sample of length L is considered we have, on the
average, L/λ links that connect one face of the sample
with the opposite one. Correspondingly, in a D dimen-
sional system there will be (L/λ)D−1 parallel links along
the edge of the cube. Since the link’s resistance is Rλ the
resistance of the whole network of the Rλ’s will be given by

RL = Rλ(λ/L)D−2. (A.1)

To find RL we need then “only” to estimate the value
of Rλ. Assuming that all the occupied bonds, i.e., all the
resistors in the system, have the same value ro, we can
estimate the value of Rλ in the LNB model as follows. We

saw that the link consists of SCBs and blobs. The num-
ber of singly connected bonds L1 in a link of length λ can
be easily shown [3,23] to be given by L1 ∝ (pb − pb

c)−1.
Now, if we neglect the resistance of the blobs (that be-
ing made of parallel resistors have lower resistance than
the same length chain that is made of singly connected
resistors) the resistance of the link can be estimated by
its lower bound which is Rλ = roL1 ∝ (pb − pb

c)
−1. How-

ever, the blobs further contribute to the resistance and
thus one expects that Rλ > roL1. One assumes then that
Rλ ∝ (pb−pb

c)
−ζ where ζ is an exponent that depends only

on the dimensionality of the system [3,69]. While calcu-
lating the values of ζ is not straight forward, the fact that
its value is larger, but not much larger, than unity is to
be expected since, when pb → pb

c there is not only a “dilu-
tion” of the network of links, but also a “dilution” in the
local structure of the blobs, and the links will approach
the limit of a chain of SCBs. In other words as pb → pb

c
the resistance will be affected by both, the “dilution” of
the network due to the increase of ξ (as in Eq. (A.1))
and the “dilution” of the blobs. The latter effect means a
“stronger” divergence of the sample resistance as pb → pb

c
and it will thus be manifested by ζ � 1. Another manifes-
tation of the same picture is the less likelihood for “closed
loops” in the structure with the increase of D, suggesting
that the value of ζ decreases to unity for D = 6, the “crit-
ical dimension” of percolation [1,2]. Indeed ζ ≈ 1.3 for
D = 2 and ζ ≈ 1.1 for D = 3 [3,69]. These simple prin-
ciples were confirmed by simple hierarchy models [1] and
simulations [3,69,70]. All the above results can be summa-
rized then by presenting the critical behavior of the global
resistance (or conductance) in a percolation system by:

RL(= 1/GL) ∝ (p − pc)−t, (A.2)

where t is the known critical exponent of the conductivity
that is given, in view of the above, by:

t = (D − 2)ν + ζ. (A.3)

These t values, that were derived by analytical approxi-
mations or Monte Carlo simulations for lattices and are
known as the universal values of the conductivity expo-
nent are, tun = ζ ≈ 1.3 for D = 2 and tun = υ + ζ ≈ 2
for D = 3.

Turning to the problem of interest here, i.e., to the
more general scenario where there are resistors of various
values in the system, let us consider the case of pb > pb

c.
For such a pb there are many possible occupied bond con-
figurations through the network but there is one that has
the lowest resistance, while the other conducting config-
urations can be considered to be connected in parallel to
it. Since the occupation of the bonds is random and there
is no correlation between the value of the resistor and its
location in the network any group of pb

c bonds out of the
available pb bonds will provide a percolating network. In
particular, the group of the pb

c resistors of lowest values
in the system of pb occupied bonds provides a configura-
tion of a minimal resistance network (MRN) that gives an
upper limit to the resistance of the system [4]. Following
the above random occupation of bonds we note that in
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every subgroup of bond-resistors, such as the percolation
cluster, the links or the SCBs have the same distribution
of the resistors values as the MRN and thus the same av-
erage resistance. This enables us to consider an “average”
resistance value and replace the above ro value, of the
case where all the resistors have the same value, with the
corresponding average of the participating resistors [3–5].

With the LNB and MRN pictures in mind we turn
to discuss the analysis that was presented in Section 2 of
this paper. For the basic physical justification for the ap-
plication of equation (3) let us consider the very simple
system of the first two types of neighbors (the two highest
conductance stairs, where z1 = z2 = 4) in the two dimen-
sional square lattice, by using the above bond percolation
parameters. This use follows the fact that the bond perco-
lation picture, as already mentioned in Section 2, is easier
to follow in the present context, but all the semiquanti-
tative results to be developed below apply equally well
to the site percolation picture. The extension of the two
nearest neighbor case (of z1 = z2 = 4) to the more gen-
eral case will be discussed further below. We know that
the number of bonds needed for onset of percolation in
the square lattice is Bc = pb

2c(4 + 4), where pb
2c is the

critical bond occupation probability for the onset of per-
colation in this lattice when the participation of both the
first and second nearest neighbors is allowed. Here Bc is a
dimensional constant (Bc = 2 in 2D [2]) and we note that
from the connectivity point of view the two types of bonds
are indistinguishable. Hence, each set of randomly chosen
fraction of pb

2c bonds will yield a single backbone, but all
the backbones that can form in such a way are topolog-
ically equivalent. Since randomly chosen, the number of
type 1 (first nearest neighbor) and type 2 (second nearest
neighbor) bonds must be the same in the above square
lattice system. Let us examine now the evolvement of the
structure of the occupied bonds networks in this system
and then discuss the evolvement of its MRN with the in-
crease of pb.

Starting at pb = pb
2c, where we need all the available

occupied bonds in order to get percolation, we must have
a fraction of pb

2c/2 occupied bonds of type 1 bonds and a
fraction pb

2c/2 of type 2 occupied bonds. As pb increases
such that pb > pb

2c we have that any randomly chosen sub-
group of pb

2c bonds, out of the pb bonds that are available,
will exhibit percolation. This enables various outcomes at
the onset of percolation with different proportions of the
two types of bonds. For example, we can still have a sub-
system of an equal fraction of the two types of bonds i.e.,
pb
2c/2 of each type (as in the pb = pb

2c case) but we can
also have a subgroup of bonds that consists of as many
bonds as possible (within the constraint that the over-
all occupation of bonds will not be less than pb

2c) of say
type 1 bonds and as few as possible type 2 bonds. In the
latter case the maximum fraction of type 1 bonds can be
as high as pb/2 as this includes all the available type 1
bonds. In order to yield percolation we must have then at
least pb

2c − pb/2 bonds of type 2. This consideration ap-
plies of course as long as pb < 2pb

2c. Larger pb values will
be considered below. Note that the same argument applies

for any fraction of the two types of bonds as long as the
sum of their fractions sum is pb

2c. In other words, there
are many networks that are topologically equivalent but
the constraint of the conductance value distribution de-
termines which one of them will determine (or dominate)
the resultant (highest possible) conductivity of the sys-
tem. The above results also confirm the expectation that
the higher the pb, the more significant can be the par-
ticipation of the type 1 bonds (i.e., the larger the ratio,
pb/2(pb

2c−pb/2) of type 1 to type 2 bonds in the so chosen
network of maximal type 1 bond participation). We fur-
ther note here that all other configurations (which have
lower overall conductivities) are connected in parallel to
the above highest conductivity one and as such the latter
determines (the lower limit of) the overall conductivity of
the system. An interesting case is when pb = pb

1c. Recall-
ing that in the square lattice pb

1c = 1/2 [2] and that (as
we saw in Sect. 2) pb

1c = 2pb
2c = 2(1/4) we get in that

case that there is also a configuration of type 1-only oc-
cupied bonds (pb/2 = pb

2c) with no participation of type 2
(pb

2c − pb/2 = 0) bonds, which is exactly the meaning of
pb
1c in our staircase model.

Let us turn now to the implication of the above con-
siderations on the resultant resistance of the system by
associating a resistance R1 (or a conductance g1 = 1/R1)
to the type 1 bonds and R2 (or a conductance g2 = 1/R2)
to the type 2 bonds, and examine in particular the case
of R2 � R1. For clarity, since resistors add in series, we
will consider here local resistors rather than local conduc-
tances. It is obvious that the more the relative partici-
pation of the smaller R1 resistors (instead of the larger
R2 resistors) in the MRN, the lower will be the resul-
tant resistance of the corresponding network. Hence, from
the electrical conductivity point of view, the lowest pos-
sible resistance of a network of pb

2c (out of pb) conductors
(within the constraint of having pb

2c bond resistors in the
subsystem) will be obtained for the occupation ratio of
(pb/2)/(pb

2c − pb/2) for the type 1 to the type 2 resistors.
In other words, the MRN will consist of pb/2, R1 resistors
and pb

2c−pb/2, R2 resistors. It is seen then that at pb = pb
2c

the “average” resistance will be simply (R1 +R2)/2, while
in the more general case of pb

2c � pb � 2pb
2c) the “average”

value of the resistors in the MRN, 〈R〉2, will be:

〈R〉2 =
(
pbR1/2 +

(
pb
2c − pb/2

)
R2

)
/pb

2c. (A.4)

This equation gives then the evolvement of 〈R〉2 with in-
creasing pb. In the case of interest here, other networks
that are possible for pb > pb

2c will be connected in parallel
to that of the MRN. However, all these networks will have
smaller ratios than (pb/2)/(pb

2c − pb/2) and thus a higher
average resistance than that of equation (A.4). Hence as
long as the 〈R〉2 ∝ R2 approximation (i.e., assuming that
R2 � [(pb/2)/(pb

2c − pb/2)]R1) is obeyed for the case of
equation (A.4) it will be obeyed even more so for all the
other possible parallel contributions of those networks.
Correspondingly, the resistance of the whole system will
be proportional to R2.

Within the framework of our paper it is important to
justify equation (3) i.e., to find out how appropriate is it
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to overlook the gm’s (1 � m < n) and thus to use the
σn ∝ gn relation in equation (3). To appreciate the role
of the two types of resistors in the system let us examine
the typical R2/R1 = 103 ratio that we have considered in
Figures 2–4 and in the experimental results, and compare
this R2/R1 ratio with the (pb/2)/(pb

2c − pb/2) ratio of the
number of R1 and R2 resistors that we derived above. Re-
calling that in the square lattice pb

2c = 0.25 we find that,
for example, for pb at 1.2pb

2c, 1.9pb
2c and 1.99pb

2c, we get
that the corresponding (pb/2)/(pb

2c − pb/2) ratios are 3/2,
19 and 199, respectively. In other words, even at pb as
high as pb = 0.497 (noting that pb

1c is just at 0.500) we
have that the contribution of the R2 resistors dominates
[R2/R1 = 103 > (pb/2)/(pb

2c−pb/2) = 199] and thus, up to
this pb value which is (by our definition of the second stair
range pb

2c � pb < pb
1c) very close to the end of this stair,

our assumption of the R2 domination is well justified. For
the above typical R2/R1 ratios we have then that for pb,
up to very close to pb

1c, the A2(p) term embedded in equa-
tion (3) is well approximated by pb

2c/[(pb
2c − pb/2)]. This

approximation, within the second stair range has a much
weaker dependence than (pb−pb

2c)
t. This justifies then our

use of a single σn value, throughout the second stair, in
the application of equation (3) that was made in Figure 2.
On the other hand, we saw that at pb

1c we have already
a percolating network that consists of R1-only resistors.
We note then, that, the width of the transition from a R2

to a R1 dominated global resistance will depend on the
R2/R1 ratio and that for the ratios considered in this pa-
per this transition is quite narrow. Since we do not use
the results of this narrow “jump”, (just below pb

1c) in our
analysis we have (as explained below) just extrapolated
asymptotically the behavior of the second stair through
this narrow range. Obviously, for pb > pb

1c the global re-
sistance of the lattice will be dominated by the network
of R1-only resistors as given by the behavior described
by equation (3) for the conductivity throughout the first
(n = 1) stair as plotted in Figure 2. Of course, in paral-
lel there will be peripheral current carrying configurations
that consist of less R1 and more R2 resistors, but these are
even more dominated by the R2 resistors than the MRN
that we described above. The important point here is that
the ratio between the global conductivity just below the
transition to that just above the transition is of the order
of g2/g1(= R1/R2). We have used this ratio also in our
analysis of the experimental data. In Figure 2 this fact is
presented by the extension of the curve of the second stair
(n = 2) conductivity so that the ratios of the conductiv-
ities of the n = 1 curve and the n = 2 curve is g1/g2 for
a common pb > pb

1c value. Following that we discuss now
the meaning of the n = 2 curve in the first stair regime.
The same interpretation applies to any n in Figure 2.

The extension of the n = 2 curve into the first stair
regime can be interpreted as a continuation of the pe-
ripheral MRN parallel configuration that consists of both
R1 and R2 resistors that could have been obtained if the
presence of the percolation cluster of the R1-only resis-
tors would have been eliminated. For dimensions higher
than 2 (see below) the average resistance of the MRN in

the pb > pb
1c regime will be given by

〈R〉2 =
{(

pb/2 − P1

)
R1 +

[
pb
2c −

(
pb/2 − P1

)]
R2

}
/pb

2c,
(A.5)

where pb
2c here is the percolation threshold of any such

system that includes the first and second nearest neigh-
bors and P1 is the well-known [1,2] occupation prob-
ability of the percolation cluster of the R1-only resis-
tors. The conductivity contribution of the R1 and R2

MRN in the first stair will be given as in equation (3)
by (1/〈R〉2)[(pb − P1 − pb

2c)/(1 − P1 − pb
2c)]t. In passing

we note that P1 cannot be larger than pb/2 and that
in our (z1 = z2) example (that is generalized below) pb

is larger than pb
2c so that within the first stair regime

pb −P1 − pb
2c = pb/2 + (pb/2−P1)− pb

2c > 0, even though
the rate of the increase of P1 with pb is larger than that
of pb [2].

Considering equation (A.5) we note that for 2D sys-
tems the contribution of the MRN that contains the R1

and R2 resistors cannot be separated from the contribu-
tion of the R1-only cluster since the MRN will be always
shortened by this cluster. On the other hand, for higher
dimensions, various types of independent percolation clus-
ters can coexist and their independent contributions to the
global conductivity can be estimated. Since the experi-
mental data that we analyze in our study are 3D systems,
the application of equation (A.5) (or its generalized form
to be given below) i.e., the extension of the conductivity
in the n = 2 stair to the regime of the n = 1 stair, is jus-
tified. We see then that, as illustrated in Figures 2 and 4,
the relation Θ2 ∝ 1/R2 used in equation (3) is also jus-
tified there. The importance of this extrapolation of the
second stair behavior to the first stair regime in our anal-
ysis is that, for high enough pb, the ratio of the resultant
conductivities, as given by the curves n = 1 and n = 2,
is of the order of R2/R1 = g1/g2, which is a central pre-
diction of our model. With a further increase of pb there
are fewer remaining R1 resistors and more R2 resistors in
the peripheral network that consists of the R1 and R2 re-
sistors in the first stair regime, since the backbone of the
percolation cluster “consumes” the finite R1 clusters [2].
Hence, the peripheral system of R1 and R2 resistors ap-
proaches, with the increase of pb, the R2-only cluster for
which the overall conductivity is definitely proportional to
1/R2 and thus, for pb appreciably above pb

1c, A2(p) ≈ 1.
To summarize, our very important conclusion is that

for the typical R2/R1 ratios used here the overall conduc-
tivity in the second stair is dominated by the R2 resistance
(except for a narrow range just below pb

1c) and that above
pb
1c the extension of the corresponding conductance contri-

bution of the second stair configuration is also dominated
by R2. Of course, the overall conductivity in the first stair
is dominated by the higher local conductance of the sys-
tem, R1. Hence, equations (3) and (4), well describe (up
to a weakly, p-dependent, factor) the dominating over-
all conductance. The use of these equations for carrying
out our analysis of the overall conductivity (as given by
Eq. (4)) is justified then. We can further conclude that
the expected overall conductance that one would actually
measure or compute, due to the two kinds of resistors, is
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the one given by the envelope of the conductivity as shown
in Figures 2 and 4. The n = 1 curve represents then the
contribution of the R1-only network while the n = 2 curve
represents the highest parallel conductance of the network
that is made of R1 and R2 resistors.

The extension of the above case of two types of bonds
to the more general case, where all the smaller than
the largest local resistor in a stair, say, Rn, may participate
in the conduction, is simple. As we saw in the above case
of two types of resistors, all the bonds associated with the
Rm’s for which m < n may contribute to the conduction
in the system. For a given pb the relative concentration
of bonds associated with the mth neighbor (where there
are n types of neighbors in the system i.e., the nth stair
regime) is (see Sect. 2) zm/Zn. Following our assumption
that R(m−1) � Rm � Rn for all m < n we can follow the
above two-resistor case and compare the cumulative par-
tial participation of bonds associated with all the Rm’s
(m < n) with the participation of the bond-resistors of
highest value, Rn. Since Σzm/Zn = Z(n−1)/Zn, the frac-
tional participation of all these bonds (as in Eq. (A.4))
is pb(Z(n−1)/Zn), while the fractional participation of the
Rn resistors (that is necessary for the onset of percolation
in the nth stair) in the MRN is: pb

nc−pb(Z(n−1)/Zn). Cor-
respondingly, the average resistance of the MRN will be
given by:

〈R〉n ≈ {
pb

(
Z(n−1)/Zn

)
R(n−1)

+
[
pb

nc − pb
(
Z(n−1)/Zn

)]
Rn

}
/pb

nc. (A.6)

And the resultant conductivity will be given by
(1/〈R〉n)[(pb − pb

nc)/(1 − pb
nc)]t.

As in the two resistors case that we considered above,
the two interesting cases are that of pb = pb

nc and
of pb = pb

(n−1)c. Indeed, in the first case we get that
the partial participation of all the low value resistors is
pb

nc(Z(n−1)/Zn) and that of the high value (Rn) resistors
is pb

nc(1−Z(n−1)/Zn), while in the case of pb = pb
(n−1)c =

pb
nc(Zn/Z(n−1)) we get that the cumulative fractional oc-

cupation of all lower value resistors is pb
nc and that none of

the higher value resistors (Rn) is involved. We note again
then that the relative contribution of the lower value resis-
tors will increase with the increase of pb, but the pb value
at which this contribution will become significant, depends
essentially on the Rn/R(n−1) ratio. We further note that
for the Rn/R(n−1) ratios considered in this work the con-
tributions of the lower value resistors (m < n) in the nth
stair will be of significance only very close to pb

(n−1)c.
The extension of the nth stair to the range of the n−1

stair (i.e., to pb
(n−1)c < pb < pb

(n−2)c) is similar to the one
used above for the two stairs case. In other words, the
contribution of the parallel networks that are dominated
by the Rn’s for pb > pb

(n−1)c will be well approximated by
(1/〈R〉n)(pb−∑

Pm−pb
nc)

t where 〈R〉n here is the average
resistance value of the local conductors at all the stairs
above the nth. In this expression, the Pm’s (1 � m � n−1)
are the probabilities to be on the percolation cluster of
bonds (or resistors) of the mth type, the corresponding

〈R〉n is given then by:

〈R〉n =
{
Σ

(
pbzm/Zn − Pm

)
Rm

+
[
pb

nc − Σ
(
pbzm/Zn − Pm

)]
Rn

}
/pb

nc. (A.7)

We note that here Pm > 0 only if pb is above the pertinent
percolation threshold, i.e., for pb > pb

mc. Obviously, if pb

belongs to the kth stair, Pm = 0 for all the m stairs for
which 1 < m < k < n. Hence, equation (A.7) is the gener-
alized average resistance of the MRN for any k < n stair.
We have then that, as in the simple two stairs scenario, our
results justify the general application of equation (3) and
our corresponding interpretation of its extension beyond
the percolation threshold of the next (higher conductivity)
stair as is manifested by equation (4).
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