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Abstract. Reflection of two strongly interacting bosons with long-rage interaction hopping on a one-
dimensional lattice scattered off by a potential step is theoretically investigated in the framework of the
extended Hubbard model. The analysis shows that, in the presence of unbalanced on-site and nearest-
neighbor site interaction, two strongly correlated bosons forming a bound particle state can penetrate a
high barrier, despite the single particle can not. Such a phenomenon is analogous to one-dimensional Klein
tunneling of a relativistic massive Dirac particle across a potential step.

1 Introduction

One of the most intriguing predictions of relativistic quan-
tum mechanics is that a below-barrier electron can pass
a large repulsive and sharp potential step (of the order
of twice the rest energy mc2 of the electron) without the
exponential damping expected for a nonrelativistic par-
ticle. Such a transparency effect, originally predicted by
Klein [1] and referred to as Klein tunneling (KT) [2], is
related to the existence of negative-energy states of the
Dirac equation. The observation of KT for a relativistic
particle is very challenging, because it would require an
ultrastrong field, of the order of the critical field for e−e+
pair production in vacuum [2,3], which is not currently
available. In recent years, there has been an increased
interest in simulating KT in diverse and experimentally
accessible physical systems (see, for instance, [4–22] and
references therein). A remarkable example is provided by
electronic transport in graphene, a carbon mono layer
of honeycomb shape, where the energy dispersion rela-
tion near a Dirac point resembles the dispersion of rela-
tivistic electrons [23–25]. Experimental evidences for KT
have been reported in graphene heterojunctions [6], car-
bon nanotubes [8], cold ions in Paul traps [19], cold atoms
in optical lattices [20], and photonic superlattices [22].

Such previous studies have been mainly devoted to the
simulation of KT of non-interacting particles, whereas less
attention has been paid to the role of particle interaction.
In reference [11], it was shown that KT of relativistic elec-
trons in graphene is strongly suppressed taking into ac-
count electron-electron interaction. In this work we show,
conversely, that in the framework of an extended Bose-
Hubbard model two strongly-interacting bosons hopping
on a one-dimensional lattice and scattered off by a poten-
tial step can show a tunneling effect that resembles KT of
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a relativistic massive Dirac particle, i.e. they can be par-
tially transmitted across a sufficiently high potential bar-
rier, despite a single particle can not. Such a correlation-
induced KT is associated to the formation of a bound
(molecular) particle state [26–33], which behaves differ-
ently from the single particle state as it is scattered off
by a potential barrier1 [33] or when an external field is
applied [30,31,34–37]. We emphasize that, for the obser-
vation of correlation-induced KT, it is crucial that the par-
ticles exhibit long-range (nearest-neighbor) interaction,
with the existence of two minibands for the two-particle
bound state. Once a potential step is applied to the lattice,
tunneling between the two minibands, which is formally
analogous to one-dimensional KT of a massive Dirac par-
ticle, can occur. Unlike one-dimensional KT of a single-
particle in a superlattice previously investigated in refer-
ences [15,22], in the Hubbard model the potential step
is impenetrable for the single particle, and KT is a clear
signature of long-range particle interaction. We will also
show that KT of a bound particle state can be observed
even in the absence of nearest-neighbor particle interac-
tion, i.e. in the framework of a standard Bose-Hubbard
model with on-site particle interaction solely, provided
that an external high-frequency ac driving force is applied.

The paper is organized as follows. In Section 2, the tun-
neling dynamics of two strongly-correlated particles scat-
tered off by a potential step is investigated in the frame-
work of an extended Bose-Hubbard model. The analysis

1 The scattering properties of the composite two-particle
state from a potential barrier or a potential well in the frame-
work of the extended Bose-Hubbard model has been recently
investigated by Kolovsky et al. [33]. In that work the authors
analyze resonantly enhanced co-tunneling, where two interact-
ing particles forming a bound state penetrate a barrier poten-
tial with higher probability than a single atom. However, they
did not consider the possibility to observe KT.
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clearly shows that, while a below-barrier single particle
is fully reflected from the potential step, a two-particle
bound state can penetrate into the barrier owing to an
interband tunneling process which is fully analogous to rel-
ativistic one-dimensional KT of a massive particle. In Sec-
tion 3, we consider the tunneling dynamics of a bound par-
ticle state in the framework of a standard Bose-Hubbard
model, i.e. without nearest-neighbor particle interaction,
and show that KT can be observed as well by application
of an external high-frequency driving force. The predic-
tions of the theoretical analysis and the onset of KT for
a two-particle bound state are confirmed in Section 4 by
numerical simulations of both the extended Bose-Hubbard
model and the ac-driven Bose-Hubbard model in the two-
particle sector of Fock space. Finally, the main conclusions
are outlined in Section 5, including a brief discussion on
a possible observation of the predicted phenomenon in a
model system of the two-particle Bose-Hubbard model.

2 Klein tunneling of a two-particle bound
state in the extended Bose-Hubbard model

2.1 The model

We consider the hopping dynamics of two strongly-
interacting particles on a tight-binding one-dimensional
lattice in the presence of a potential barrier with both on-
site and nearest-neighbor interaction. The two particles
can be two bosons, such as two neutral atoms trapped on a
one-dimensional lattice, or two fermions, such as two elec-
trons with opposite spins. For the sake of definiteness, we
will refer to the former case. The particle dynamics can be
described by a rather standard one-dimensional extended
Bose-Hubbard model (EHM) [32–35] with Hamiltonian
(� = 1)

Ĥ = −J
∑

l

â†l (âl−1 + âl+1) +
U

2

∑
l

n̂l(n̂l − 1)

+ V
∑

l

n̂ln̂l+1 +
∑

l

εln̂l. (1)

In equation (1) â†l and âl are the creation and annihila-
tion operators of bosons and n̂l = â†l âl the particle number
operators at lattice sites l = 0,±1,±2, . . ., J is the single-
particle hopping rate between adjacent sites, U and V
define the on-site and nearest-neighbor interaction ener-
gies, respectively, and εl is the applied potential step of
height Δ, defined by:

εl =
{

0 l < 0
Δ l ≥ 0. (2)

The Hamiltonian (1) conserves the total number N of par-
ticles. As compared to the standard Hubbard or Bose-
Hubbard model (which is obtained by letting V = 0
in Eq. (1)), the EHM accounts for nonlocal particle in-
teraction, which is essential for the observation of KT,
as discussed below. The EHM is a prototype model

in condensed-matter physics [38–44], where the nearest-
neighbor term V arises from Coulomb repulsion of elec-
trons in adjacent sites due to non-perfect screening of
electronic charges. Nearest-neighbor particle interaction
also arises for fermionic ultracold atoms or molecules with
magnetic or electric dipole-dipole interactions in optical
lattices. In this case the ratio V/U can be tuned by modi-
fying the trap geometry of the condensate, additional ex-
ternal dc electric fields, combinations with fast rotating
external fields, etc. (see, for instance, [45,46] and refer-
ences therein). In the following, we will consider the case
U, V > 0, corresponding to particle repulsion, and U > V
for the sake of definiteness. However, a similar analysis
could be done for the attractive particle case U, V < 0.

2.2 Single-particle tunneling

Tunneling of a single particle on a tight-binding lattice
scattered off by a potential step or a potential barrier is a
rather simple problem, which has been studied in previous
papers (see, for instance, [47,48]). The problem is here
briefly reviewed for the sake of completeness. In the N = 1
sector of Fock space, the state vector |ψ(t)〉 of the system
can be expanded as |ψ(t)〉 =

∑
l cl(t)â

†
l |0〉. The amplitude

probabilities cl(t) to find the particle at lattice site l evolve
according to the coupled equations:

i
dcl
dt

= −J(cl+1 + cl−1) + εlcl. (3)

In the absence of the potential step (εl = 0), the single-
particle Bloch eigenstates of the system are plane waves
cl(t) ∝ exp(iql) exp[−iE(q)t], where −π ≤ q < π is the
quasi-momentum and E(q) = −2J cos(q) is the dispersion
relation of the tight-binding band (see Fig. 1a). A particle
wave-packet with a carrier quasi-momentum q = q0 and
mean energy E0 = −2J cos(q0) moves on the lattice with
a group velocity vg = (dE/dq)q0 = 2J sin(q0). In the pres-
ence of the potential step of height Δ (see Eq. (2)), the
space-dependent band diagram of the particle is schemat-
ically shown in Figures 1b and 1c for increasing values of
the potential height Δ. For a relatively low barrier height,
under-barrier transmission occurs, with the wave packet
partially transmitted and partially reflected from the po-
tential step (see Fig. 1b); however, as Δ is increased such
that Δ > 2J + E0, the potential step is impenetrable,
and the wave packet is fully reflected: the barrier step is
impenetrable for a single particle (see Fig. 1c); in partic-
ular, for Δ > 4J any particle is fully reflected from the
potential step. Note that this tunneling scenario is anal-
ogous to that of a single non-relativistic particle freely
moving and scattered off by a potential step (i.e. without
the periodic lattice potential). In particular, partial (or
full) transparency of the step as the barrier height Δ is
increased, i.e. KT, cannot be observed for a single particle.

2.3 Two-particle tunneling

To study the scattering properties of the potential step for
a bound pair, let us consider the N = 2 particle sector of
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Fig. 1. Tunneling of a single-particle hopping on a one-
dimensional tight-binding lattice scattered off by a potential
step. (a) Band diagram of the particle; (b) and (c): space-
dependent band diagram and wave packet scattering in the
presence of a potential step. In (b), the above-barrier tun-
neling is shown: a particle wave packet is partially reflected
and partially transmitted by the potential step. The case of
under-barrier tunneling is shown in (c): the potential step is
impenetrable and a particle wave packet is fully reflected.

the Fock space for the Hamiltonian (1) and let us expand
the state vector |ψ(t)〉 of the system as:

|ψ(t)〉 =
∑
n,m

cn,m(t)â†nâ
†
m|0〉, (4)

where cn,m(t) is the amplitude probability to find one par-
ticle at the lattice site n and the other particle at the lat-
tice site m, with cn,m = cm,n for bosonic particles. The
evolution equations for the amplitude probabilities cn,m,
as obtained from the Schrödinger equation i∂t|ψ〉 = Ĥ |ψ〉
with � = 1, read explicitly

i
dcn,m

dt
= −J (cn+1,m + cn−1,m + cn,m−1 + cn,m+1)

+ [Uδn,m + V δn,m+1 + V δn,m−1

+ (εn + εm)] cn,m. (5)

Here, we consider the strong interaction and low-field
regimes, corresponding to J,Δ� U, V , with U −V of the

order of the tunneling rate J . In this regime, at leading
order, the dynamics in Fock space for the amplitudes cn,m

with m = n, n ± 1 decouples from the other states (see,
for instance, [36]). Therefore, if we assume that the two
particles are initially placed at the same lattice site or in
nearest sites, i.e. if we assume cn,m(0) = 0 for m �= n, n±1
as an initial condition, equation (5) can be restricted to
the amplitudes cn,n and cn,n+1 = cn+1,n: the two parti-
cles form a bound state, and are allowed to stay solely at
the same site or in nearest-neighbor sites owing to energy
conservation constraints. After setting

cn,n(t) = f2n(t) exp[−i(U + V )t/2] (6)

cn,n+1(t) =
1√
2
f2n+1(t) exp[−i(U + V )t/2] (7)

the dynamics of the amplitudes fn(t) reads

i
dfn

dt
= −

√
2J(fn+1 + fn−1) + (−1)nσfn + δnfn, (8)

where we have set

σ ≡ U − V

2
(9)

and

δn ≡
{

2εn/2 n even
ε(n+1)/2 + ε(n−1)/2 n odd. (10)

Note that for a potential step (Eq. (2)) one has explicitly

δn ≡
⎧⎨
⎩

0 n ≤ −2,
Δ n = −1,
2Δ n ≥ 0.

(11)

Equations (8) are formally analogous to the tight-binding
model describing the hopping dynamics of a single particle
in a binary superlattice in the presence of a potential bar-
rier, described by equation (10), the energy difference 2σ
between adjacent lattice sites being determined by the
unbalance (U − V ) of on-site and nearest-neighbor site
interaction in the original problem. As discussed in sev-
eral previous works (see, for instance, [15,18,22,49,50]), a
Dirac-like behavior is found for a non-relativistic particle
hopping on a binary superlattice in one dimension, in-
cluding the analogue of KT in the presence of a potential
barrier. In our case, since equations (8) describe the corre-
lated hopping dynamics of a particle bound state, tunnel-
ing of two correlated bosons across the potential barrier is
thus expected to be analogous to relativistic KT. To clar-
ify this point, let us first observe that, in the absence of
the barrier step (δn = 0) and for U �= V , the two-particle
bound state of the EHM is described by two minibands
with the dispersion relations (see, e.g., [32,33,36])

E±(q) =
U + V

2
±
√(

U − V

2

)2

+ 8J2 cos2(q) (12)

and the corresponding Bloch eigenstates are given by:

fn ∝
( −2

√
2J cos(q)

E(q) − σ − U+V
2

)
exp[iqn− iE(q)t], (13)
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with E(q) = E+(q) or E−(q) for the two minibands (see
Fig. 1b). In equation (13), the upper (lower) row applies
to an even (odd) index n. The two bands are separated by
the gap 2σ = U − V , and their width is given by:

W =

√(
U − V

2

)2

+ 8J2 −
(
U − V

2

)
. (14)

Note that, for σ 
 J , the Bloch states of the upper
(E = E+) miniband basically correspond to occupation
of the even-index sites, i.e. fn � 0 for n odd. Accord-
ing to equations (6) and (7), such states correspond to
the two particles occupying the same lattice site. Con-
versely, the lower miniband (E = E−) corresponds to
occupation of odd-index sites, i.e. fn � 0 for n even.
This means that, in this case, the two particles occupy
nearest-neighbor sites (according to Eqs. (6) and (7)). A
wave packet with carrier wave number q = q0, obtained
as a superposition of Bloch states with wave number q
close to q0, describes a particle bound state propagating
with a group velocity vg = (dE/dq), which has opposite
sign for upper and lower minibands. In particular, one has
vg > 0 for a wave packet belonging to the upper miniband
provided that −π/2 < q0 < 0. A pseudo-relativistic dy-
namics is obtained at the boundary of the Brillouin zone,
where the dispersion relations of the two minibands equa-
tion (12) can be approximated by the hyperbolic positive-
and negative-energy branches of a one-dimensional (spin-
less) Dirac particle with an effective mass defined by the
superlattice detuning parameter. In physical space, one
should consider a broad wave packet with mean momen-
tum close to the Bragg wave number. In this regime the
discrete equation (8) can be transformed, by continua-
tion of the variables, into the massive Dirac equation for
a one-dimensional (spinless) particle. The mathematical
derivation of the Dirac equation from the discrete tight-
binding equation (8) can be found, for instance, in refer-
ences [49,50], and we refer the reader to such works for
technical details.

Let us now consider the scattering problem from the
potential step. According to equations (8) and (11), the
reflection of a two-particle bound state from the potential
step (2) is formally analogous to the one-dimensional scat-
tering problem of a single-particle in a binary superlattice
by the potential step (11). As shown in references [15,22],
in this case partial transmission of a wave packet across
the potential step can be observed as a result of an inter-
band tunneling process, which resembles KT of a massive
relativistic Dirac particle2. Analytical calculations of the
transmission coefficient of KT in this setting have been de-
rived in reference [15] and compared with the expression of
the transmission coefficient for a massive Dirac particle in

2 It should be noted that the potential barrier (11) expe-
rienced by the two-particle bound state hopping on the lat-
tice is not strictly a sharp potential step, as for the single
particle (compare Eqs. (11) and (2)). However, as shown in
reference [15], KT is still observed for a rapid potential barrier.
Only for a smooth (adiabatic) potential step KT is suppressed,
as originally noticed by Sauter (see [3]).

the continuous limit of the discrete equation (8)3. Unlike
KT for a massless Dirac particle, where complete trans-
mission is achieved [23–25], for the case of a massive Dirac
particle (which is actually the original tunneling problem
studied by Klein and Sauter [1,3]), the transmission is
only fractional and related to the so-called kinematical
factor (see, for instance, Eqs. (2) and (3) of Ref. [2]). A
physical picture of the two-particle interband tunneling
process, and its connection to KT of a massive Dirac par-
ticle, is shown in Figures 2b−2d. The figures depict the
space-dependent energy band diagram of the two-particle
bound state and the interband tunneling process of a
wave packet across the step that can be observed at large
enough potential steps. The two minibands depicted in the
figure, and describing the states of a two-particle bosonic
molecule in the original Hubbard model, are analogous to
the conduction (upper miniband) and valence (lower mni-
band) bands of a massive Dirac fermion in single-layer
graphene (see, for example, [51]). As is well-known, KT
is expected to be observed for an enough large potential
height such that energy states of the conduction band (for
l < 0) are set in resonance with energy states of the va-
lence band (for l > 0). Since we are dealing with a massive
Dirac particle (i.e. the dispersion curves of the two mini-
bands are locally parabolic and separated by an energy
gap, rather than being linear with no gap), wave packet
transmission is only fractional and not complete. Indeed,
let us consider a wave packet belonging to the upper (con-
duction) miniband, with carrier wave number q0 < 0 and
energy E0 = E+(q0), forward propagating along the lat-
tice (vg > 0) and scattered off by the potential step at
l = 0. If the potential height 2Δ is sufficiently low, the
two-particle bound state undergoes under-barrier tunnel-
ing (like for the single-particle problem), with the wave
packet partially transmitted and partially reflected from
the barrier (see Fig. 2b). As the barrier height is increased,
like for the single-particle case the potential step becomes
impenetrable, and the two particles are fully reflected from
the barrier (see Fig. 2c). As the barrier height is further
increased, the lower miniband at l > 0 becomes energet-
ically overlapped with the upper miniband at l < 0, and
thus the two particles can now partially cross the region
l > 0 via an interband tunneling process (see Fig. 2d). The
transmitted wave packet, belonging to the lower miniband,
has a carrier wave number q1 > 0 which is obtained from
the energy conservation relation E+(q0) = E−(q1) + 2Δ,
whereas the reflected wave packet, belonging to the up-
per miniband, has a carrier wave number opposite to the
one of the incident wave packet, namely −q0. The trans-
mission coefficient can be determined from the continuity
condition of the wave function at the interface l = 0, and
its explicit form is given by equation (7) of reference [15].
Here, we just mention that the condition for the observa-
tion of interband tunneling is that the energy E0 of the
incoming wave packet falls inside the lower miniband of
the superlattice at l > 0, i.e.,

Δ >
E0 − V

2
and Δ <

E0 − V +W

2
. (15)

3 Specifically, see equation (7) and Figure 3 of reference [15].
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Fig. 2. Tunneling of a bound-particle state in the framework of the extended Bose-Hubbard model. (a) Band diagram of a
two-particle bound state for U > V , showing the appearance of two minibands; (b)−(d): space-dependent band diagram and
wave packet scattering in the presence of a potential step with increasing height Δ. In (b) a two-particle bound wave packet
is partially reflected and partially transmitted by the potential step. In (c) the potential step is impenetrable and the particle
wave packet is fully reflected. In (d) an interband tunneling process, with partial transmission of the wave packet, is observed.
Such an interband two-particle tunneling process is analogous to KT of a massive Dirac particle.

Examples of KT for a bound particle wave packet will be
presented in Section 4.

3 Klein tunneling of the two-particle bound
state in the ac-driven Bose-Hubbard model

In the previous section, we have shown that one-
dimensional KT of a two-particle bound state, scattered
off by a potential step, can be observed provided that the
two particles show strong nearest-neighbor site interac-
tion, in addition to onsite interaction. In this section, we
show that a similar result can be obtained even in the
absence of nearest-neighbor particle interaction, provided
that an external high-frequency ac driving force F (t) is
applied. To this aim, let us consider a standard Bose-
Hubbard model describing the dynamics of on-site inter-
acting bosons in the presence of an external driving field
and of a potential step. The Hamiltonian of the system
now reads:

Ĥ = −J
∑

l

â†l (âl−1 + âl+1) +
U

2

∑
l

n̂l(n̂l − 1)

+
∑

l

εln̂l + F (t)
∑

l

ln̂l. (16)

As compared to the EHM of Section 2 (see Eq. (1)), the
nearest-neighbor interaction term V is now absent in the
Hamiltonian, however an external driving force F (t) has

been added. The external ac force can be introduced, for
example, by periodically-shaking the optical lattice, as dis-
cussed in many works (see, for instance, [52–54] and ref-
erences therein). Let us focus our attention to the N = 2
particle sector of Fock space, and let us expand the state
vector |ψ(t)〉 of the system according to equation (4). The
evolution equations of the amplitude probabilities cn,m(t)
now read

i
dcn,m

dt
= −J (cn+1,m + cn−1,m + cn,m−1 + cn,m+1)

+ [Uδn,m + εn + εm + (n+m)F (t)] cn,m. (17)

We consider a sinusoidal force at frequency ω and
amplitude F0

F (t) = F0 cos(ωt) (18)
and assume the high-frequency and strong-interacting
regimes, defined by:

J

ω
≡ α� 1,

U

ω
∼ 1,

Δ

ω
∼ O(α). (19)

In addition, we assume that the resonance condition U �
Mω is satisfied, where M is a non-vanishing integer num-
ber (typically M = 1 or M = 2). The detuning parameter

2σ = U −Mω (20)
from exact resonance is assumed to be small, such that
σ/U ∼ O(α). To capture the dynamics of the two parti-
cles, it is worth introducing the new amplitudes

an,m(t) = cn,m(t) exp [iMωδn,mt+ i(n+m)Φ(t)] (21)
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where we have set

Φ(t) =
∫ t

0

dt′F (t′) =
F0

ω
sin(ωt). (22)

In terms of the new amplitudes an,m, the coupled
equations (17) read:

i
dan,m

dt
= −J {an+1,m exp [iMω(δn,m − δn+1,m)t− iΦ(t)]

+ an−1,m exp [iMω(δn,m − δn−1,m)t+ iΦ(t)]
+ an,m+1 exp [iMω(δn,m − δn,m+1)t− iΦ(t)]
+ an,m−1 exp [iMω(δn,m − δn,m−1)t+ iΦ(t)]}
+ 2σδn,man,m + (εn + εm)an,m. (23)

In the high-frequency limit and assuming the scaling de-
fined by equations (19), at leading-order in the smallness
parameter α the two-particle dynamics is described by
neglecting the rapidly-oscillating terms in equations (23)
(see, for instance, [37,55]). Application of the rotating-
wave approximation to equations (23) then leads to the
following effective (averaged) set of coupled equations

i
dan,n

dt
= −2J [JM (Γ )an,n+1 + J−M (Γ )an−1,n]

+ 2(σ + εn)an,n, (24)

i
dan,n+1

dt
= −J [J−M (Γ )an+1,n+1 + JM (Γ )an,n

+ J0(Γ )an−1,n+1 + J0(Γ )an,n+2]
+ (εn + εn+1)an,n+1, (25)

i
dan,m

dt
= −JJ0(Γ )(an+1,m + an−1,m + an,m+1

+ an,m−1) + (εn + εm)an,m (m > n+ 1),
(26)

where we have set
Γ =

F0

ω
, (27)

and where Jl is the Bessel function of first kind and
of order l. If the driving parameter Γ is chosen such
that J0(Γ ) = 0 (for example at Γ = 2.405), from
equations (24)−(26) it follows that the dynamics of am-
plitudes an,n and an,n+1, governed by equations (24)
and (25), decouples from the other amplitudes an,m with
m ≥ n + 2. Note that in this regime the hopping of
two uncorrelated particles on the lattice is suppressed, ac-
cording to equation (26) (coherent destruction of tunnel-
ing [56]). Hence, as opposed to the static Hubbard model
considered in Section 2.3, in the temporally-modulated
Hubbard model hopping of a single boson on the lattice
is suppressed, and thus it cannot tunnel the barrier step.
However, this is not the case for a bound particle state,
for which hopping is not suppressed and, thus, tunneling
across the potential step can be observed. The hopping
motion of the two-particle bound state can be at best cap-
tured by introduction of the amplitudes

f2n = an,n exp(−iMπn+ iσt), (28)

f2n+1 =
√

2an,n+1 exp(−iMπn+ iσt). (29)

Taking into account that J−M (Γ ) = (−1)MJM (Γ ), sub-
stitution of equations (28) and (29) into equations (24)
and (25) yields

i
dfn

dt
= −

√
2Jeff(fn+1 + fn−1) + (−1)nσfn + δnfn, (30)

where δn is defined by equation (10) and where we have
set Jeff = JJM (Γ ). Equation (30), which is the main
result of this section, shows that the hopping dynamics
of a two-particle bound state in the ac-driven Hubbard
model, under the resonance condition (20) and provided
that J0(F0/ω) = 0, is analogous to that of a two-particle
bound state in the EHM, presented in Section 2.2, where
the difference 2σ = (U − V ) between on-site and nearest-
neighbor site particle interaction energies is determined
by the detuning of the driving quanta Mω from U (see
Eq. (20)) and the hopping rate J is replaced by an ef-
fective hopping rate Jeff = JJM (Γ ). Therefore, the main
effect of the driving force, with appropriate detuning and
amplitude, is to introduce a fictitious long-range (second-
order) interaction in the original Hubbard model with on-
site interaction solely, making it possible the observation
of correlation-induced KT as discussed in Section 2.3. A
simple physical picture of the effective two-particle hop-
ping dynamics in the presence of the high-frequency driv-
ing force, as described by equation (30), is the follow-
ing one. In the absence of the external driving force, two
bosons initially placed on the same lattice site form a sta-
ble bound state, dissociation being forbidden for energy
constraint. For J � U , the hopping of the bound parti-
cle state on the lattice is very slow (it is a second order
process), and can be neglected. When the external force is
switched on, single-particle tunneling from the state cn,n

(the two bosons occupy the same lattice site) to the state
cn,n±1 (the two bosons occupy nearest-neighbor lattice
sites) is allowed, energy conservation being now ensured
by M quanta of external driving field (U ∼ Mω). In this
way, the two-particle bound state cn,n can partially disso-
ciate (into the state cn,n±1) and then recombine again in
the nearest lattice site (the state cn−1,n−1 or cn+1,n+1),
leading to an effective two-particle hopping motion on the
lattice. If the resonance condition U = Mω is not strictly
satisfied, the detuning 2σ = U−Mω introduces a residual
energy mismatch 2σ of the states, which mimics an effec-
tive unbalanced long-range (nearest-neighbor) interaction.

4 Numerical simulations

To check the predictions of the theoretical analysis and
the onset of KT for a bound particle state, investigated in
Sections 2 and 3, we have numerically simulated the two-
particle dynamics for the EHM and the ac-driven Bose-
Hubbard model using an accurate variable-step fourth-
order Runge-Kutta method, without any approximation.
A wide lattice, comprising typically 50 sites, has been as-
sumed to avoid finite boundary effects.

In a first set of simulations, we numerically solved the
EHM (1) in the two-particle sector of Fock space to reveal
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Fig. 3. Scattering of a two-particle bound state wave packet from a potential step in the framework of the extended Bose-
Hubbard model. The upper panels show the numerically-computed evolution of the particle density function Pn(t) (defined by
Eq. (31)) for increasing values of the barrier height Δ and for J = 1, U = 11 and V = 8. In (a) Δ = 0, in (b) Δ = 1.5, and
in (c) Δ = 2.6. The horizontal dashed lines indicate the position of the potential step. The insets in the figures schematically
show the space-dependent band diagrams of the two-particle bound state minibands in the three cases. In (c) KT is observed
as an interband tunneling process. The lower panels show, for comparison, the scattering of a single-particle wave packet from
the potential step (evolution of |cn(t)|2).

the appearance of KT for the two-particle bound state.
As an example, in Figure 3, we show a typical scattering
scenario for a two-particle bound state wave packet (upper
panels), and corresponding scattering of a single-particle
wave packet (lower panels), for parameter values J = 1,
U = 11, V = 8 and for increasing values of the potential
step height Δ. For such parameter values, the band gap
and width of the two bound particle state minibands of
Figure 2a are 2σ = U − V = 3 and W � 1.7, respectively.
To simulate the scattering of a two-particle bound-state,
equations (5) have been numerically integrated with the
initial condition

cn,m(0) ∝ δn,m exp[−(n+ n0)2/w2] exp(2iq0n)

and with q0 = π/4, w = 3 and n0 = 8. For the single
particle problem, we assumed as an initial condition

cn(0) ∝ exp[−(n+ n0)2/w2] exp(iq0n)

with q0 = π/2, w = 3 and n0 = 9. The upper panels in
Figures 3a−3c show the evolution of the particle density

function
Pn(t) =

1
2
〈ψ(t)|â†nân|ψ(t)〉 (31)

along the lattice for Δ = 0, Δ = 1.5, and Δ = 2.6. For the
two-particle state, such barrier heights correspond to the
absence of the barrier and to the cases (c) and (d) of Fig-
ure 2, respectively (see the insets in Fig. 3). For the single-
particle problem, the three values of barrier height corre-
spond to the absence of the barrier and to the cases (b)
and (c) of Figure 1, respectively. For the two-particle prob-
lem, according to equation (6) the initial condition

cn,m(0) ∝ δn,m exp[−(n+ n0)2/w2] exp(2iq0n)

corresponds to the excitation of the even-sites of the equiv-
alent superlattice problem (Eq. (8)). Such an initial condi-
tion mainly excites the upper miniband of the superlattice
with spectral components centered at q0 = π/4, however
a non-negligible superposition of Bloch modes belonging
to the lower miniband also occurs. As a consequence, the
initial two-particle wave packet splits into two wave pack-
ets forward and backward propagating, as clearly shown
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Fig. 4. Scattering of a two-particle bound state wave packet from a potential step in the framework of the ac-driven Bose-
Hubbard model. The three panels show the numerically-computed evolution of the particle density function Pn(t) (defined by
Eq. (31)) for increasing values of the barrier height Δ and for J = 1.92, U = 19, ω = 16, and Γ = F0/ω = 2.405. In (a) Δ = 0,
in (b) Δ = 1.5, and in (c) Δ = 2.6.

in the upper panels of Figure 3. The forward-propagating
wave packet, belonging to the upper miniband, is then
scattered off by the potential step, as discussed in Sec-
tion 2.3 (see also Figs. 2b−2d). In the absence of the
potential step, the wave packet propagates straight away
(see Fig. 3a). As the potential step is increased, the wave
packet is partially transmitted and reflected by the step,
till the barrier height gets larger than the energy of the
wave packet. In this regime the wave packet is fully re-
flected from the potential barrier, as clearly shown in the
upper panel of Figure 3b. As the barrier height is further
increased, the lower miniband at n > 0 gets overlapped
with the upper miniband at n < 0, and therefore KT is
observed, as shown in Figure 3c. This behavior is not ob-
served for a single particle, as shown in the lower plots
of Figure 3. The numerical results corroborate the theo-
retical predictions of Section 2 and clearly show that KT
is a signature of particle correlation. Note that, since we
are dealing with KT of a massive particle, wave packet
transmission is not complete, and about R ∼ 62% of the
wave packet is reflected at the interface. Such a value
turns out to be in good agreement with the theoretical
value R = 1 − T � 0.598, computed from equation (7) of
reference [15].

In a second set of simulations, we numerically solved
the ac-driven Bose-Hubbard model (16) in the two-particle
sector of Fock space to reveal the appearance of KT for the
two-particle bound state even in the absence of nearest-
neighbor particle interaction. Parameter values used in the
numerical simulations are J = 1.92, U = 19, ω = 16 and
Γ = 2.405, corresponding to the first (M = 1) resonance
condition (see Eq. (20)) with a detuning 2σ = U −ω = 3.
Note that, for such parameter values the effective coupling
Jeff entering in the effective superlattice model of equa-
tion (30) is Jeff = JJ1(Γ ) � 1, so that the ac-driven
Hubbard model basically maps the parameter values of the
EHM shown in the simulations of Figure 3. In Figure 4,

we show the scattering scenario for a two-particle bound
state wave packet as obtained by solving equation (17) for
three values of the barrier height Δ = 0, Δ = 1.5 and
Δ = 2.6. As an initial condition we assumed

cn,m(0) ∝ δn,m exp[−(n+ n0)2/w2] exp(2iq0n)(−1)n

with q0 = π/4, w = 3 and n0 = 9 4. The scattering behav-
ior of the wave packet is fully analogous to that observed
in Figure 3 and is in agreement with the theoretical pre-
dictions presented in Section 3.

5 Conclusions and discussion

In this work we studied the tunneling of two strongly-
correlated particles across a potential step in the frame-
work of the extended Bose-Hubbard model and of the
ac-driven Bose-Hubbard model. The main result of the
analysis is that, in the presence of nearest-neighbor par-
ticle interaction or, in the absence of this interaction, un-
der a suitable ac-driving force, two strongly interacting
particles forming a bound state can undergo Klein tun-
neling across a high potential step, while a single parti-
cle does not. The reason thereof is that, contrary to a
single-particle state which is described by a single tight-
binding band, a two-particle bound state is described by

4 The extra-phase term (−1)n in the initial condition is in-
troduced because we are considering an odd resonance M = 1,
according to equation (28). Such term ensures that the wave
packet mainly excited Bloch states belonging to the upper
miniband of the equivalent superlattice. Such an extra-phase
term would not be present for an even resonance. We also
note that, for the ac-driven Hubbard model, the single particle
would be frozen in the lattice owing to coherent destruction of
tunneling, as discussed in Section 3. Therefore, in Figure 4, we
only show the scattering behavior of a two-particle state in the
presence of particle interaction.
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two minibands, which are analogous to the positive- and
negative-energy branches of the Dirac equation. When a
potential step with appropriate height is applied, the up-
per and lower minibands can become overlapped, thus al-
lowing for interband tunneling. This picture of KT shows
that a two-particle bound state KT is analogous to KT
of a single particle in a binary superlattice, investigated
and experimentally observed in references [15,22]. How-
ever, the KT discussed in this work is physically very
distinct from single-particle tunneling in a superlattice or
from KT of single-particles in other physical systems (such
as in graphene), because it is a clear signature of particle
correlation.

As a final comment, we would like to briefly discuss
possible model systems of the Bose-Hubbard Hamiltonian
where correlation-induced KT could be observed. A first
system is provided by cold atoms in optical lattices. The
existence of two-atom bound states and correlated tun-
neling of pairs have been already observed in such sys-
tems [26,27]. However, for the observation of KT of a
bound particle state for ultracold atoms there are at least
two issues that would deserve a further investigation. The
first one is related to the system preparation of wo-particle
bound state wave packets, which are highly-excited states
and require to properly drive the system of out equilib-
rium. Also, our analysis has been limited to consider tun-
neling of a single paired state, whereas with current ex-
perimental set-ups there are several bound pairs trapped
in the optical lattice that undergo KT and that might in-
teract. The second issue is the possibility to implement a
sharp potential step. In fact, in a smooth potential barrier
KT would be suppressed (see, for instance, [15]). Another
experimentally-accessible and fully controllable model sys-
tem capable of simulating the two-particle sector of the
extended Bose-Hubbard Hamiltonian is provided by light
transport in square optical waveguide lattices with diago-
nal defects [57,58]. In this optical setting the temporal evo-
lution of a two-particle system in Fock-space is mapped
into spatial light propagation along a square waveguide
lattice, with defects on the main and first two lateral
diagonals that mimic on-site and nearest-neighbor par-
ticle interaction [57]. This optical system would enable
to tune the difference U − V in a very simple way by
changing the propagation constants of waveguides on the
three diagonals of the lattice. Also excitation of the system
with an elliptical Gaussian wave packet along the main
diagonal, that basically realizes the initial wave packet
condition used in the simulations of Figure 3, should be
feasible.

To conclude, it is envisaged that our results could
stimulate further theoretical and experimental studies on
the simulation of relativistic quantum phenomena with
correlated particles. For example, it is expected that a
bound particle state freely hopping on the lattice should
show Zitterbewegung, similarly to what happens to a rel-
ativistic freely moving particle5 [59,60].

5 Zitterbewegung has been recently observed for single par-
ticles in both quantum and classical simulators of the Dirac
equation (see Refs. [59,60]).
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13. D.O. Güney, D.A. Meyer, Phys. Rev. A 79, 063834 (2009)
14. E. Rossi, J.H. Bardarson, P.W. Brouwer, S. Das Sarma,

Phys. Rev. B 81, 121408 (2010)
15. S. Longhi, Phys. Rev. B 81, 075102 (2010)
16. O. Bahat-Treidel, O. Peleg, M. Grobman, N. Shapira, M.

Segev, T. Pereg-Barnea, Phys. Rev. Lett. 104, 063901
(2010)

17. J. Casanova, J.J. Garcia-Ripoll, R. Gerritsma, C.F. Roos,
E. Solano, Phys. Rev. A 82, 020101 (2010)

18. D. Witthaut, T. Salger, S. Kling, C. Grossert, M. Weitz,
Phys. Rev. A 84, 033601 (2011)

19. R. Gerritsma, B.P. Lanyon, G. Kirchmair, F. Zähringer,
C. Hempel, J. Casanova, J.J. Garcia-Ripoll, E. Solano, R.
Blatt, C.F. Roos, Phys. Rev. Lett. 106, 060503 (2011)

20. T. Salger, C. Grossert, S. Kling, M. Weitz, Phys. Rev.
Lett. 107, 240401 (2011)

21. Z. Lan, N. Goldman, A. Bermudez, W. Lu, P. Öhberg,
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