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Abstract. We simulate the three-dimensional quantum Heisenberg model with a spatially anisotropic lad-
der pattern using the first principles Monte Carlo method. Our motivation is to investigate quantitatively
the newly established universal relation TN/

√
c3 ∝ Ms near the quantum critical point (QCP) associated

with dimerization. Here TN , c, and Ms are the Néel temperature, the spinwave velocity, and the staggered
magnetization density, respectively. For all the physical quantities considered here, such as TN and Ms,
our Monte Carlo results agree nicely with the corresponding results determined by the series expansion
method. In addition, we find it is likely that the effect of a logarithmic correction, which should be present
in (3 + 1)-dimensions, to the relation TN/

√
c3 ∝ Ms near the investigated QCP only sets in significantly

in the region with strong spatial anisotropy.

1 Introduction

While being the simplest models, Heisenberg-type models
provide qualitatively, or even quantitatively useful infor-
mation regarding the properties of cuprate materials. For
example, the spatially anisotropic quantum Heisenberg
model on the square lattice with different antiferromag-
netic couplings in the 1 and 2 directions is demonstrated
to be relevant for the underdoped cuprate superconduc-
tor YBa2Cu3O6.45 [1,2]. Specifically, it is argued that this
model provides a possible mechanism for the newly dis-
covered pinning effects of the electronic liquid crystal in
YBa2Cu3O6.45 [3]. Because of their phenomenological im-
portance, these models continue to attract a lot of at-
tention analytically and numerically. In addition to being
relevant to real materials, Heisenberg-type models on geo-
metrically nonfrustrated lattices are important from a the-
oretical point of view as well. This is because these mod-
els can be simulated very efficiently using first principles
Monte Carlo methods. Hence they are very useful in ex-
ploring ideas and examining theoretical predictions [4–12].

Recently a new universal behavior between the thermal
and quantum properties of (3 + 1)-dimensional dimerized
quantum antiferromagnets has been established [13,14].
Specifically, using the relevant field theory, it is shown that
the Néel temperature TN can be related to the staggered
magnetization density Ms near a quantum critical point
(QCP). This new universal property is then compared
with experimental data for TlCuCl3 in reference [15] and
the agreement is impressive. In addition, in reference [14]
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the relevant series expansion calculations are performed
for the (3 + 1)-dimensional ladder-dimer quantum anti-
ferromagnet. The obtained results match reasonably well
with the corresponding field theory predictions. Similar
behavior was obtained in Monte Carlo simulations of [16]
with various kinds of model.

Motivated by this newly established universal relation
between thermal and quantum properties close to a QCP
as well as to study this scaling behavior quantitatively, we
simulate the (3 + 1)-dimensional ladder-dimer quantum
Heisenberg model using the first principles Monte Carlo
method. The relevant quantities such as TN , Ms, and the
spinwave velocity c are determined with high precision. We
find that our results agree nicely with the series expansion
calculations presented in reference [14]. In particular, with
an empirical fitting ansatz, our Monte Carlo data imply
that the effect of a logarithmic correction, which should be
present in (3 + 1)-dimensions, to the relation TN/

√
c3 ∝

Ms near the considered QCP only sets in significantly in
the region with strong spatial anisotropy.

2 Microscopic model and corresponding
observables

The three-dimensional quantum Heisenberg model consid-
ered in this study is defined by the Hamilton operator

H =
∑
〈xy〉

J �Sx · �Sy +
∑
〈x′y′〉

J ′ �Sx′ · �Sy′ , (1)



Page 2 of 5

J’

J

Fig. 1. The (3+1)-dimensional spatially anisotropic quantum
Heisenberg model considered in this study.

where J (J ′) is the antiferromagnetic exchange coupling
connecting nearest neighbor spins 〈xy〉 (〈x′y′〉). The model
described by equation (1) and studied here is illustrated
in Figure 1. To investigate the newly established univer-
sal behavior between TN and Ms near the critical point
induced by dimerization, the spin stiffnesses in all spatial
directions, which are defined by

ρsi =
1

βL1L2L3

〈
W 2

i

〉
, (2)

are measured in our simulations. Here β is the inverse
temperature, Li refers to the spatial box size in the i di-
rection, and 〈W 2

i 〉 with i ∈ {1, 2, 3} is the winding num-
ber squared in the i direction. In addition, the observable
〈(mz

s)
2〉 is recorded in our calculations as well in order to

determine Ms. Here mz
s is the z component of the stag-

gered magnetization �ms = 1
L1L2L3

∑
x(−1)x1+x2+x3 �Sx. To

perform the investigation, using the stochastic series ex-
pansion algorithm (SSE) with operator-loop update [17],
we have carried out large scale Monte Carlo simulations
with various inverse temperatures and box sizes L at sev-
eral values of J ′/J (we use L1 = L2 = L3 in most of our
simulations and J is set to be 1.0 throughout the calcula-
tions). Notice that, since the established QCP induced by
dimerization is at (J ′/J)c ∼ 4.0 [18], we have performed
our calculations for 2.5 ≤ J ′/J ≤ 4.0. First of all, let us
focus on our results of determining TN .

3 Determination of the Néel temperatures

To calculate the Néel temperatures TN for which the long-
range antiferromagnetic order is destroyed for T > TN , at
each fixed J ′/J = 2.5, 3.0, 3.25, 3.375, 3.5, 3.625, 3.75,
and 3.875, we have performed simulations by varying T
for L = 8, 12, 16, . . . , 36, 40. Further, the numerical values
of TN are obtained by employing the standard finite-size
scaling analysis to the relevant observables. Specifically,
near TN and for the observables ρsiL with i ∈ {1, 2, 3},
the curves of different L as a function of T should tend to
intersect at TN . Interestingly, we find that at each consid-
ered J ′/J the correction to scaling for these observables
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Fig. 2. Monte Carlo data of ρsL (top panel) and ρs3L (bottom
panel) for J ′/J = 3.5. The lines are added to guide the eye.
The box sizes L for the data points on both panels are L = 8,
12, 16, . . . , 32, 36, and 40.

is negligible when the relevant data points with L ≥ 20
are employed in the analysis. In other words, our data can
be described well by the expected leading scaling ansatz.
Specifically, the ansatz employed in our finite-size scaling
analysis is of the form g(x), where g is a smooth func-
tion of the parameter x and x contains a factor linear
in (T − TN)/TN . Indeed, by applying the fourth order
Taylor expansion of the expected leading scaling ansatz
to ρsL = (ρs1 + ρs2)L/2, we arrive at TN = 0.7751(2) for
J ′/J = 3.5 (top panel of Fig. 2). Using a third order Taylor
expansion of the leading scaling form leads to a value of TN

which agrees nicely with TN = 0.7751(2). Employing the
same procedure, the value of TN determined from ρs3L for
J ′/J = 3.5 is given by 0.7750(2) (bottom panel of Fig. 2).
Notice that the TN obtained from these two different ob-
servables agree with each other quantitatively. The TN at
other couplings J ′/J are calculated with the same strat-
egy and Table 1 summarizes our results of determining
the values of TN at the considered couplings J ′/J . Notice
a bootstrap resampling method is employed in obtaining
the results in Table 1. In particular, the quoted errors are
determined by a conservative estimate based on the stan-
dard deviations of the fits with good quality. Later these
determined TN will be used in examining the universal
behavior between TN and Ms near the QCP associated
with dimerization.
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Table 1. The numerical values of TN at J ′/J = 2.5, 3.0, 3.25,
3.375, 3.5, 3.625, 3.75, 3.875 determined by applying the lead-
ing scaling ansatz to the relevant observables. All the χ2/DOF
of these fits are smaller than 1.6.

Observable J ′/J TN J ′/J TN

ρsL 2.5 1.0014(2) 3.5 0.7751(2)

ρs3L 2.5 1.0014(2) 3.5 0.7750(2)

ρsL 3.0 0.9317(2) 3.625 0.7087(3)

ρs3L 3.0 0.9316(2) 3.625 0.7086(3)

ρsL 3.25 0.8690(2) 3.75 0.6197(2)

ρs3L 3.25 0.8689(2) 3.75 0.6193(3)

ρsL 3.375 0.8270(2) 3.875 0.4853(3)

ρs3L 3.375 0.8269(2) 3.875 0.4849(4)
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Fig. 3. Monte Carlo data of 〈(mz
s)

2〉 as functions of L. From
top to bottom the corresponding values of J ′/J for these curves
are 2.5, 3.0, 3.125, 3.25, . . . , 3.75, and 3.875, respectively. The
lines are added to guide the eye.

4 Determination of the staggered
magnetization density

To calculate Ms, we have measured the observ-
able 〈(mz

s)
2〉. Specifically, by extrapolating the zero-

temperature 〈(mz
s)

2〉 at finite lattice size to the bulk
value (mz

s)
2(∞), Ms can then be obtained from Ms =√

3(mz
s)2(∞). Notice that to determine Ms by this

method one needs the zero-temperature values of 〈(mz
s)

2〉.
We have carried out trial runs for L = 20 with βJ = 20
and βJ = 40 at J ′/J = 2.5, 3.0, 3.125, 3.25, 3.375, 3.5,
3.625, 3.75, 3.875. The obtained values of 〈(mz

s)
2〉 for these

two different inverse temperatures β at all the considered
couplings J ′/J agree reasonably well. Hence the extrapo-
lation using the data of 〈(mz

s)
2〉 calculated with βJ = L

in the simulations should lead to correct results. Indeed it
has been demonstrated in reference [16] that the extrapo-
lated values of 〈(mz

s)
2〉 for various couplings J ′/J , deter-

mined with the data obtained from simulations employing
βJ = L and βJ = 2L, are consistent with each other. Fig-
ure 3 shows our 〈(mz

s)2〉 data for L = 6, 8, 10, . . . , 32, 36, 40
at the considered J ′/J . The extrapolation results for these
data using the ansatz a + b/L + c/L2 + d/L3 are depicted
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Fig. 4. Monte Carlo determination of Ms as a function of
J ′/J . The solid curve is reproduced from reference [14] and is
the fitting result based on series expansion calculations.

in Figure 4. In Figure 4 the solid curve is reproduced
from reference [14] and is the fitting result based on se-
ries expansion calculations. The agreement between our
Monte Carlo data and series expansion results of Ms is
remarkable.

5 Determination of the spinwave velocity

There are several methods to determine the low-energy
constant c. Here we use the idea of winding numbers
squared. Specifically, for each J ′/J we adjust the ratio of
L1/L3 so that all three spatial winding numbers squared
take approximately the same values. Then we tune β in
order to reach the condition 〈W 2

t 〉 ∼ 〈W 2
i 〉 for i ∈ {1, 2, 3}.

Here 〈W 2
t 〉 is the temporal winding number squared. Once

this condition is met, the numerical value of c is estimated
to be L/β2 ≤ c ≤ L/β1, where L = (L1L2L3)1/3 and β1

(β2) stands for the largest (smallest) inverse temperature
so that the criterion 〈W 2

i 〉 ≤ 〈W 2
t 〉 (〈W 2

i 〉 ≥ 〈W 2
t 〉) for i ∈

{1, 2, 3} is satisfied. For the isotropic case J ′/J = 1.0, the
spinwave theory predicts c ∼ 1.9091J [19]. Remarkably,
for a trial simulation with J ′/J = 1.0, L1 = L2 = L3 = 20
and βJ = 10.476 (hence L/β ∼ 1.9091J), the ratio of the
average of three spatial winding numbers squared and the
temporal winding number squared is 0.994 approximately.
This confirms the validity of calculating c using the idea
of winding numbers squared. For each coupling J ′/J stud-
ied here, we further consider at least two sets of box sizes
for which the condition 〈W 2

t 〉 ∼ 〈W 2
i 〉 for i ∈ {1, 2, 3} is

satisfied. With this strategy, the numerical values of c ob-
tained for J ′/J = 2.5, 3.0, 3.25, 3.5, 3.375, 3.625, 3.75,
3.875, and 4.0 are shown in Table 2. The results shown in
Table 2 imply that the values of c at the considered cou-
plings are already convergent to the corresponding bulk
values. Even if some of our determined c have not reached
their bulk values, one expects the deviations to be very
small. Hence such systematic uncertainty would have lit-
tle impact on our investigation of the universal relation
between TN and Ms.
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Table 2. The numerical values of c obtained through the wind-
ing numbers squared for various couplings J ′/J .

J ′/J L1 L3 c/J J ′/J L1 L3 c/J

2.5 22 28 2.215(8) 3.5 46 62 2.348(10)

2.5 36 46 2.215(9) 3.625 22 30 2.360(12)

3.0 32 42 2.282(13) 3.625 34 46 2.360(13)

3.0 44 58 2.283(11) 3.75 22 30 2.376(12)

3.25 12 16 2.317(7) 3.75 44 60 2.378(11)

3.25 18 24 2.317(8) 3.875 16 22 2.391(7)

3.25 24 32 2.317(11) 3.875 32 44 2.389(8)

3.375 12 16 2.335(12) 4.0 16 22 2.408(13)

3.375 24 32 2.334(13) 4.0 32 44 2.405(15)

3.5 34 46 2.347(12) 4.0 42 58 2.401(10)

6 Comparison between theoretical predictions
and Monte Carlo results

In reference [14] the following universal relation between
TN and Ms near a QCP is predicted using the correspond-
ing field theory

TN =

√
12c3

5
Ms. (3)

Notice the original prediction in reference [14] has c1c2c3

instead of c3 for anisotropic systems. Here ci refers to the
spinwave velocity in i direction. On the other hand, we use
the c defined in previous section to examine the validity
of the prediction for an anisotropic system. Interestingly,
at first glance it seems that we investigate a modified pre-
diction which is slightly different from the original one
determined in reference [14]. However, the analysis per-
formed in our study is in principle equivalent to verifying
the original prediction. This can be understood as follows.
To calculate the spinwave velocity ci corresponding to the
i direction for each i ∈ {1, 2, 3}, one needs to employ a
condition in the simulations so that the method used does
not favor any particular spatial direction. For the idea we
consider here, the most natural requirement is to demand
that the square of three spatial winding numbers 〈W 2

1 〉,
〈W 2

2 〉, and 〈W 2
3 〉 take the same value. This condition can

be fulfilled by adjusting the aspect ratio of the box sizes
used in the simulations. Once this criterion is met, the ci

which corresponds to (the finite box size) Li is then given
by ci(Li) = Li/β. Here β is the inverse temperature so
that each 〈W 2

i 〉 for i ∈ {1, 2, 3} is equal to the temporal
winding number squared 〈W 2

t 〉. The bulk ci can be deter-
mined by considering the convergence of ci at box sizes Li

and 2Li for sufficiently large Li. Notice the original pre-
diction in reference [14] has a factor c1c2c3. For a finite
lattice with volume L1L2L3 so that the condition of the
validity of our method is satisfied, c1(L1)c2(L2)c3(L3) is
given by L1L2L3/β3 which is exactly the definition of the
quantity c3 introduced here. As a result, the c3 defined
here correctly approaches the bulk c1c2c3 in the thermo-
dynamics limit. In conclusion, the way we proceed in this
investigation is in principle equivalent to examining the
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Fig. 5. Results of TN as a function of J ′/J determined by
Monte Carlo simulations (solid circles), series expansion (solid
squares) as well as field theory calculations (solid curve). The
field theory and series expansion results are estimated and re-
produced from reference [14]. The dashed and dotted lines are
added to guide the eye.

original relation predicted in reference [14]. Notice in real
simulations, the condition that the square of three spatial
winding numbers take the same value can only be reached
approximately due to the discreteness of finite lattices,
hence leads to the inequality used above when calculat-
ing c with this method. To verify equation (3), in refer-
ence [14] the numerical values of TN , c, and Ms for various
couplings J ′/J are determined numerically using the se-
ries expansion method. Further, the agreement between
the numerical results from series expansion calculations
and the field theory prediction is shown to be reasonably
good. The quantum Monte Carlo determination of TN and
Ms for the (3+1)-dimension ladder-dimer model is avail-
able in reference [16] as well. Notice that to quantitatively
investigate the relation in equation (3), one needs to ad-
ditionally calculate c. This motivates our study presented
here. As a first step to quantitatively study equation (3),
in Figure 4 we have already compared our Monte Carlo
results for Ms with those determined by the series expan-
sion method obtained in reference [14]. The consistency
of Ms calculated with these two different methods is im-
pressive. Next, we compare our Monte Carlo data of TN

with the series expansion results available in reference [14].
Such a comparison is presented in Figure 5. Near the QCP
J ′/J ∼ 0.4, the consistency between the values of TN

determined by these two different methods is reasonably
good as well. Finally, equation (3) implies that the curve
of TN/

√
c3 as a function of Ms should be linear assum-

ing the logarithmic correction is not taken into account. In
Figure 6 we compute TN/

√
c3 as a function of Ms. Indeed

qualitatively the curve shown in Figure 6 is linear in Ms.
A fit of the TN/

√
c3 data for J ′/J = 2.5, 3.0, . . . , 3.875 in

Figure 6 to the expression a+bMs leads to a = 0.0117(20)
which is slightly above the expected value a = 0. We at-
tribute such deviation to the logarithmic correction not
taken into account in our analysis. Since the obtained
a = 0.0117(20) is only slightly above zero, one expects
that for the considered parameters J ′/J , either the effect
due to the logarithmic correction is small or this correction
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Fig. 6. Monte Carlo data of TN/
√

c3 as functions of Ms. While
the solid line is the result of fitting the data to the form a +
bMs, the dashed line is obtained using the ansatz b1Ms +
d1Ms log(Ms) for the fit. The square symbol stands for the
result associated with J ′/J = 1.0 and is obtained using the
calculations in references [19,20].

only sets in significantly for the region with much stronger
spatial anisotropy. Interestingly, the value of b obtained
from the fit is about half of the predicted value

√
12/5.

Although we have argued that the way we proceed in this
study is in principle equivalent to examining the original
prediction, one possible explanation for the deviation be-
tween the slope extracted here and

√
12/5 is that we use

c3 instead of c1c2c3 in equation (3). This needs further
investigation. Nevertheless, we do find that equation (3)
is valid to a great extent using our definition of c. With-
out the explicit form of the logarithmic correction, we are
not able to properly describe the data in our analysis. On
the other hand, in the spirit of the expansion in chiral
perturbation theory for Quantum Chromodynamics, it is
naturally to include Ms log(Ms) as the additional cor-
rection. Remarkably, we can reach a good result using the
ansatz b1Ms + d1Ms log(Ms) for the fit (dashed line in
Fig. 6). Notice the resulting fitting curves of these two dif-
ferent ansätze match nicely in the regime where our Monte
Carlo data are available.

7 Discussions and conclusions

In this report, we have simulated the three-dimensional
ladder-dimer quantum Heisenberg model using the first
principles Monte Carlo method. Our motivation is to
investigate quantitatively the newly established universal
relation between TN and Ms near a QCP. We find that
for all the quantities considered here, such as TN and
Ms, our Monte Carlo calculations agree nicely with the
corresponding results determined by the series expansion
method. Assuming equation (3) is correct without con-
sidering the correction, then TN/

√
c3 as a function of Ms

should vanish at Ms = 0. We find that the deviation be-
tween the extrapolated result of TN/

√
c3 and zero is of the

order 10−2. This implies that either the logarithmic cor-
rection is small or this correction only sets in significantly

for the region with much stronger spatial anisotropy. In-
deed, our Monte Carlo data of TN/

√
c3 can be described

well by an empirical ansatz b1Ms + d1Ms log(Ms). Fur-
ther, the resulting fitting curves of the two different
ansätze used in our analysis match nicely in the regime
where our Monte Carlo data are available. This con-
firms that indeed the logarithmic correction only sets in
significantly for the region beyond what we have stud-
ied. Finally, using the spinwave theory and series ex-
pansion results available in references [19,20], one ob-
tains TN ∼ 0.944, Ms ∼ 0.424, and c ∼ 1.9091J for the
isotropic case J ′/J = 1.0. The data point of TN/

√
c3

and its corresponding Ms for J ′/J = 1.0 is depicted as
the square in Figure 6. It is remarkable that the predic-
tion equation (3) is valid (qualitatively) all the way up to
Ms ∼ 0.4.
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A.W. Sandvik and U.-J. Wiese.
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