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Abstract. Tipping points are a common occurrence in complex adaptive systems. In such systems feedback
dynamics strongly influence equilibrium points and they are one of the principal concerns of research in this
area. Tipping points occur as small changes in system parameters result in disproportionately large changes
in the global properties of the system. In order to show how tipping points might be managed we use the
Maximum Entropy (MaxEnt) method developed by Jaynes to find the fixed points of an economic system
in two different ways. In the first, economic agents optimise their choices based solely on their personal
benefits. In the second they optimise the total benefits of the system, taking into account the effects of
all agent’s actions. The effect is to move the game from a recently introduced dual localised Lagrangian
problem to that of a single global Lagrangian. This leads to two distinctly different but related solutions
where localised optimisation provides more flexibility than global optimisation. This added flexibility allows
an economic system to be managed by adjusting the relationship between macro parameters, in this sense
such manipulations provide for the possibility of “steering” an economy around potential disasters.

1 Introduction

One of the key issues in studying complex systems is un-
derstanding those dynamics that might appear to be sta-
ble but are subject to rapid, unforeseen and significant
shifts in their macroscopic properties [1]. Complex adap-
tive systems often have many elements that are coupled to-
gether through feedback loops and they tend to exhibit un-
predictable dynamics as well as showing a consistent long
term trend. For example a share market might have un-
predictable daily jumps in the individual prices of shares
but the overall market might grow at a stead 7% ± σ for
years, where σ represents small random fluctuations in
price. However share markets can crash without warning,
wiping out many years of steady growth. Combining some
of these properties in a unified model has proved a diffi-
cult, but not yet impossible, task [2]. A very early model
of random fluctuations in share markets was introduced
by Bachelier in his Ph.D. thesis in 1900 [3,4], pre-dating
Einstein’s work on what is now called Brownian motion
by a number of years.

It is not simply that these systems are complicated
with many interacting elements, although this is often a
contributing factor. For example it has been shown that
even the simplest systems with only two interacting ele-
ments can show chaotic dynamics [5]. However in many
of these systems we can usefully distinguish between the
fast dynamics that are difficult to predict and the slower
long term but more predictable dynamics, and it is these
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slower dynamics, specifically their fixed points and their
tipping points, that are the topic of this work.

The aim of this paper is to provide two alternative
interpretations of the same economic scenario, both of
which can be analysed in terms of the MaxEnt method-
ology introduced by Jaynes [6]. In the first scenario a
recently developed MaxEnt Lagrangian formulation of
micro-economic game theory is described [7]. The equilib-
rium solutions of such a formulation has previously been
shown to have analogues in drift-diffusion models of be-
havioural game theory [8,9]. An alternative Lagrangian is
then introduced where each agent is trying to optimise a
global utility function, extending the previous analysis to a
macro-economic Lagrangian. This interpretation has anal-
ogous results in previous work on drift diffusion processes
applied to systems where both players have the same util-
ity function [10]. We provide three examples of different
economic scenarios that give rise to striking differences in
the nature of their tipping points and the techniques that
can be employed to manage them.

One possible solution for addressing tipping points is
to reverse the direction of the “parametric drift” that
is driving the system to collapse before the tipping point is
crossed, and thereby return the system to its original state.
However reversing such a dynamic may be too difficult or
even if the effort is successful the overall system remains
susceptible to the same tipping point in the future. In this
context it is not necessarily the final position the system
finds itself in that is the problem, it is that the abrupt shift
in the system is too quick for suitable adjustments to be
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Fig. 1. Hysteresis and the cyclical collapse of a system that is
drifting across an equilibrium surface. Q can be thought of as
a behavioural outcome, dictated by the system structure and
its parameters.

made: for example rising sea levels may be something we
can adapt to if it happens over many thousands of years,
but over decades the effects could be catastrophic for low
lying coastal populations. Here we suggest that by man-
aging the macro-parameters of dynamical systems such
collapses might be avoided. A key result is that by break-
ing up a system’s optimisation so that it reflects locally
optimised solutions, the resultant control of parameters
allows for a more finessed control of the overall system
dynamics and the ability to steer around regions where
catastrophic collapses might occur.

2 A toy model of tipping points
and stochastic dynamics

A tipping point is where a system parameter that can
be thought of as fixed over the short term slowly varies
over a longer time frame and as it varies the system
passes through a bifurcation where there is no longer a
locally feasible equilibrium of the system and it collapses
to the next nearest fixed point, one that can be very
far away in phase space. Figure 1 illustrates this situa-
tion by plotting the equilibrium points of the equation
Q = tanh(2(Q+δ)), Q ∈ [−1, 1] where equilibrium points
are any Q satisfying this equation. In this plot it is clear
that there are either one or three equilibrium values of
Q for any given value of δ. Such an equation comes from
the analysis of certain dynamical systems where many in-
dividual elements are stochastically interacting with one
another, such as a lattice of particles [11] or models of
people’s social interactions [12].

Such systems are stochastic in nature and so Q is a ran-
dom variable and the plot of Q in Figure 1 is related to the

central tendency of Q, see references [13,14]. In this sense
the stochastic variation of the system around a central
value of Q can be thought of as the fast dynamics of the
system and the long term variation described by changes
in the central value of Q as the slow dynamics. In this
sense Figure 1 shows a system in (stochastic) equilibrium
on the upper branch of the S curve near Q = 1 and the δ
parameter slowly varies over time in the negative direction
until the equilibrium branch it is on collapses, at which
point the system rapidly moves to the only equilibrium
point available near Q = −1. The hysteresis of the type
shown here has been studied in physics [15], economics [7],
abrupt climate change [16], the global dynamics of share
market crashes [17] and even in foraging models of ant
collonies [18].

3 Local and global optimisation
in a simple economy

The quantal response equilibrium (QRE) is an eco-
nomic equilibrium concept developed by McKelvey and
Palfrey [19,20]. Recently it has been adopted as a model
of “bounded rationality” for economics [21,22] and a re-
cent alternative derivation of the QRE was reported in [7]
where the maximum entropy [6] (MaxEnt) technique was
used. We begin with this recent derivation using a dual
Lagrangian approach arriving directly at the QRE and
then show the extension of this previous work to the global
optimisation case using an alternative single Lagrangian.

We consider a two person non-cooperative game theory
scenario in which the utility matrices for two economic
agents a and b have incentives for making choices i ∈ {1, 2}
(a) and j ∈ {1, 2} (b) whose value depends on the choices
of the other agent. This is described using the two utility
matrices given by:

ua
i,j =

[
ua

1,1 ua
1,2

ua
2,1 ua

2,2

]
, ub

i,j =

[
ub

1,1 ub
1,2

ub
2,1 ub

2,2

]

and the expected utility to each economic agent in each
group is described in terms of the joint probability distri-
bution p(a = i)q(b = j) = piqj :

E(ua) =
∑
i,j

piqju
a
i,j , E(ub) =

∑
i,j

piqju
b
i,j .

The conventional Nash equilibrium [23] is found by each
agent maximising their expected utility by varying their
distribution over strategies:

p∗i = argmaxpi

∑
i,j

piqju
a
i,j ∀ i

and
q∗j = argmaxqj

∑
i,j

piqju
b
i,j∀j.

The QRE is different in that it can be viewed as the solu-
tion to a constrained optimisation of the entropy [6,7] of
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each player’s distribution:

p∗i = max
pi

S(pi) = max
pi

(
−
∑

i

pi ln(pi)

)
(1)

subject to the constraints:

pi ≥ 0 ∀ i,
∑

i

pi = 1,
∑
i,j

piqju
a
i,j = E (ua) . (2)

Such a constrained optimisation problem can be solved
by forming the Lagrangian and then finding the station-
ary solutions ∇{pi}L(pi) = 0, see [24] Chapter 12 for de-
tails and a proof that these stationary solutions are (local)
maximums:

L(qi) = S(pi) + βa

∑
i,j

piqju
a
i,j + β0

∑
i

pi, (3)

∂L(pi)
∂pi

= − ln(pi) + βa

∑
j

qju
a
i,j + β0 − 1 = 0, (4)

pi = Z−1
a exp

(
βa

∑
j

qju
a
i,j

)
, (5)

where the Z−1
a = exp(β0−1) term enforces the normalisa-

tion constraints. This Lagrangian technique balances the
rate of change due to the multiple constraints placed on
the system. Note that if there were no constraints and
we were to simply maximise the entropy a uniform dis-
tribution would result. Adding a constraint such as the
expected utility requires the change in a players utility to
be balanced against changes in the system’s entropy as the
probabilities vary. The β terms then act to either empha-
sise or de-emphasise the “cost” associated with these con-
straints. Because the β0 term enforces the normalisation
constraint it is entirely decided by the other constraints
and the requirement that we want a probability distribu-
tion. It also follows that:

qi = Z−1
b exp

(
βb

∑
i

piu
b
i,j

)
. (6)

Note that equations (5) and (6) are identical with the
QRE of MacKelvey and Palfrey [19]. The exponents
are called the conditional expected utilities, for example
E(ua|i) =

∑
j qju

a
i,j is the value player a receives if they

play strategy i given the distribution of their opponent’s
strategy.

For the global optimisation we now assume that both
players are interested in maximising their own utility plus
the utility of the other player. It will be shown that the net
effect is that both players have the same utility function,
a situation common in many games [10,25,26]. The con-
strained optimisation is to maximise the entropy subject
to a total expected utility:

max
pi,qj

S(piqj) = max
pi,qj

(
−
∑
i,j

piqj ln(piqj)

)
(7)

subject to the constraints:

pi ≥ 0, qj ≥ 0 ∀ i, j (8)∑
i

pi = 1,
∑

j

qj = 1,
∑
i,j

piqj = 1, (9)

∑
i

piqj = qj ∀ j,
∑

j

piqj = pi ∀ i (10)

E (ua)+E
(
ub
)
=
∑
i,j

piqj

(
ua

i,j +ub
i,j

)
=E

(
utot

)
. (11)

The constraints in equation (9) implicitly requires that
the pi and qj be chosen independently of each other. The
Lagrangian of the joint probability distribution is:

L(piqj) = S(piqj) + β
∑
i,j

piqj

(
ua

i,j + ub
i,j

)

+
∑

j

(
δa
j

(∑
i

piqj − qj

))

+
∑

i

(
δb
i

(∑
j

piqj − pi

))

+ β0

∑
i,j

piqj + βa
0

∑
i

pi + βb
0

∑
j

qj . (12)

Note that there are two unusual terms here:∑
j

(
δa
j

(∑
i piqj − qj

))
and

∑
i

(
δb
i

(∑
j piqj − pi

))
.

For all of the other constraints in the Lagrangian one side
of the constraint is a constant and is then lost when we
differentiate in the next step, but this is not the case for
the constraints in equation (10). This might complicate
the solution we arrive at but it will be shown below that
by fixing the δa

j and δb
i values we can cancel these terms

with an additional entropic term that arises here but is
not present in the previous dual Lagrangian approach.

The β0 term enforces the normalisation constraints
of the joint distribution over choices (Eq. (9)), the δa

j

and δb
i parameters enforce the marginalisation constraints

(Eq. (10)) and the β term enforces the constraint on the
total utility E(utot) (Eq. (11)). The stationary points are
found by setting ∇{pi,qi}L(piqj) = 0 and solving for pi

and qj :

∂L(piqj)
∂pi

= S(qj) − ln(pi) + β
∑

j

qj(ua
i,j + ub

i,j)

+
∑

j

δa
j qj + β0 + βa

0 − 1 = 0 (13)

∂L(piqj)
∂qj

= S(pi) − ln(qj) + β
∑

i

pi(ua
i,j + ub

i,j)

+
∑

i

δb
i pi + β0 + βb

0 − 1 = 0. (14)

Note that by setting δa
j = ln qj ∀ j and δb

i = ln pi ∀ i then
S(qj) +

∑
i δa

j qj = 0, S(pi) +
∑

j δb
i pi = 0 and the fixed
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points are:

pi = Z−1
a exp

(
β
∑

j

qj

(
ua

i,j + ub
i,j

))
(15)

qj = Z−1
b exp

(
β
∑

i

pi

(
ua

i,j + ub
i,j

))
(16)

and Z−1
a = exp(β0+βa

0−1) and Z−1
b = exp(β0+βb

0−1) en-
force the normalisation constraints in equation (9). There
are two significant points of differentiation between equa-
tions (5) and (6) compared to equations (15) and (16).
The first is that there is only one β term used for both pi

and qj in equations (15) and (16). The second is that the
utilities that appear in the exponents in equations (15)
and (16) are the sum of the utilities rather than the in-
dividual utilities. Taken together, these two points mean
that there is only one overall utility matrix that both play-
ers use: ui,j = ua

i,j + ub
i,j and a single β parameter that

is equivalent to β = βa = βb in equations (5) and (6). In
what follows we refer to the fixed points found using the
local Lagrangian QREL and the fixed points of the global
Lagrangian QREG.

4 Fixed point surfaces, bifurcations
and adaptive flexibility

In order to simplify the discussion we reduce the QRE
and the Global QRE by substituting Qa = 1 − 2qi, Qa ∈
[−1, 1] and Qb = 1 − 2pj, Qb ∈ [−1, 1]. In the follow-
ing examples we discuss the results exclusively in terms
of the behavioural variable Qb. For the simple examples
shown here this is not a restriction as the same discussion
would hold for Qa, however in more complex games this is
not necessarily the case. The system’s equilibrium points
are then determined by the payoff matrices and the four
terms: Qa, Qb, βa and βb.

The first game we consider is:

ua
i,j =

[
1 0
0 1

]
, ub

i,j =
[

1 0
0 1

]
.

The fixed point surface for Qb is shown in the upper plot
of Figure 2. The plane that passes through the plot at
βa = βb intersects the fixed point QRE surface as shown
in lower plot of Figure 2. The utility matrix for the Global
QRE is the utility of a (or b) rescaled by a factor of 2,
this shifts where the bifurcation point occurs in the lower
plot of Figure 2 (from β = 2 to β = 1) but not the qual-
itative features. So the lower plot of Figure 2 showing
the intersection of the QRE with the plane βa = βb has
the same qualitative features as the Global QRE for this
game. In this sense QREG is qualitatively a sub-space of
QREL. Note that if the system is any equilibrium state on
a branch above the pitchfork bifurcation, if either βa, βb

(top plot) or β (bottom plot) continuously decrease there
is no way in which the system can avoid going through
the bifurcation point.

0 1 2 3 4 5
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1.0

Β �Βa � Βb�

Q

Fig. 2. Top: the equilibrium surface for the first example show-
ing a generalisation of the pitchfork bifurcation. Bottom: the
intersection of the plane that runs through the plot at 45o, i.e.
βa = βb, in the plot above with the QREG surface showing the
subspace of fixed points for (a scaled form of) QREG showing
a conventional pitchfork bifurcation.

The second game is a perturbed version of the first:

ua
i,j =

[
1 0
0 1.1

]
, ub

i,j =
[

1 0
0 1.1

]
.

In this case QREG is again qualitatively a sub-space of
QREL but in this case the bifurcation involves a discon-
tinuous jump in the behavioural variable Qb as seen in
Figure 3. In this case a large portion of the QREL sur-
face is isolated from the continuous upper surface. Some
earlier results [27] suggest that this might be a localised
effect in the sense that as either βa → ∞ or βb → ∞ the
two surfaces meet.

The third game is a qualitatively different
perturbation:

ua
i,j =

[
1 0
0 0.95

]
, ub

i,j =
[

1 0
0 1.05

]
.
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Fig. 3. Top: the QREL surface for the second game showing
the local separation of one equilibrium surface from another.
Bottom: the 45o β plane that intersects the QREL surface in
the plot above.

In this example the QREG is still a sub-space of the
rescaled QREL with a utility matrix for both players in
this example for QREG is:

ui,j = ua
i,j + ub

i,j =
[

2 0
0 2

]
,

i.e. the same (rescaled) matrix for QREG as in the first ex-
ample that resulted in a pitch-fork bifurcation. Now how-
ever QREL has a far more complex shape as shown in
Figure 4 where the βa = βb plane has been omitted for
clarity, however it does intersect QREL in a pitchfork bi-
furcation just as in the lower plot of Figure 2.

Now there is no separation of the two surfaces, instead
there is a twist in the surface topology that exchanges the
connective paths between the upper and lower branches.
Because of the symmetry of the utility matrices the twist
occurs precisely where the rescaled QREG sub-space inter-
sects QREL. But in the case of QREL there is the poten-
tial for βa and βb to vary at different rates. As β = βa = βb

is a requirement of QREG there is no flexibility in the

Fig. 4. The equilibrium surface for QREL in example 3.

relationship between βa and βb, however for QREL this
is not the case and we can posit two different functional
relationships between these two parameters: βa = f(βb)
and βa = g(βb). While we describe functional relation-
ships f(βa) and g(βb) we note that these are very general
considerations. The purpose is only to show that if both
βa and βb are under the explicit control of an external
agent, then perturbing one term relative to the other en-
ables tipping points to be avoided, see reference [7] for an
example where these β terms are tax rates set by an exter-
nal government agency. These alternative surfaces through
QREL are shown in Figure 5 and the subsequent sub-
spaces are shown in Figure 6. The resultant fixed point
curves for these alternative joint variations in βa and βb

clearly show that should a single parameter, either βa or
βb, be slowly decreasing a tipping point can be avoided ir-
respective of which branch of the equilibrium surface the
system is on (either the top branch or the lower branch),
there is a parameter variation that leads to a perfectly
smooth transition of the system without passing through
a tipping point.

5 Discussion

To illustrate these ideas we consider an idealised exam-
ple. The automotive industry might produce a combina-
tion of petrol and electric powered cars and the energy
sector might build a combination of outlets that sell ei-
ther electricity or petrol to car drivers. These are “in-
dependent strategies” each industry arrives at based on
the underlying incentives, but the incentives for producing
a particular type of car changes depending on the avail-
ability of the different types of stations: if more electric-
ity stations are built it makes it more practical to have
an electric car rather than a petrol car. These micro-
economic dynamics that are based on the underlying in-
centives are usually described using stochastic differential
equations (SDEs) and there are many game theoretical
results arriving at an exponential form of the probability
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Fig. 5. Two alternative subspaces of QREL can be found
by a variation in the relationship between βa and βb, top:
βa = f(βb) and bottom: βa = g(βb) for the same QREL of
example 3, see Figure 6 for the equilibrium points in these two
sub-spaces. Note that the curvature of the intersecting surface
is in the opposite direction when comparing the top and bot-
tom plots, hence different functional relationships f(βb) and
g(βb). A suitable choice of such a variation allows for the navi-
gation around a tipping point irrespective of where the system
happens to be initially, either on the top branch or the bottom
branch.

distributions [5,8,9,28,29]. In this sense, changing the in-
centives changes the evolutionary dynamics of the SDEs,
and the different incentives are then responsible for the
different structures of the tipping points.

Such considerations lead to a key result relating SDEs
to the MaxEnt Lagrangian: if there is an SDE that models
a system’s micro-dynamics with linear drift terms (linear
expectations across incentives in game theory) there is a
corresponding MaxEnt formulation, both of which have
the same stationary solutions [30]. While the results de-
scribed in this article are not explicitly based on a model of
micro-dynamics, there exists a system of micro-dynamics
for which the probability distributions derived here are
an equilibrium solution. So from this point of view, even
though we have maximised the entropy of a system sub-

0 1 2 3 4 5
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C 

Fig. 6. The equilibrium points of the sub-spaces that intersect
QREL in the top and bottom plots of Figure 5. Note that de-
pending on where the system starts, either on the top branch
(A) or the bottom branch (B), a perturbation to the relation-
ship between βa and βb through choosing either f(βb) or g(βb)
results in a smooth trajectory from the starting point, either A
or B, to position C without passing through a tipping point.

ject to some constraints, the result is that of an equi-
librium distribution of a related micro-dynamical system.
Whether or not this other system reflects a useful eco-
nomic dynamic is the subject of future work.

Tipping points are one of the most important diag-
nostic tools we have available to study complex envi-
ronments such as financial markets [7,31] and climate
systems [32–34] and both of these areas use models of
varying levels of detail. Simplified models of coupled non-
linear systems such as the two presented here provide an
important step in improving our understanding of the
nature and potential for navigating around such catas-
trophes. Considerable research effort is being applied to
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understanding the direction a system is heading in and its
proximity to a tipping point, with a particular focus on
climate change [35–38]. In principle at least, if an exter-
nal “system manager” knew where a system was within
its phase space and their models were based on adequate
empirical knowledge of that system, then it is possible to
have some degree of security in their ability to manage the
task of avoiding a tipping point.

There are three conclusions that may be drawn at this
point. The first is that tipping points such as these are
sensitively dependent on all of the system parameters. As
the system parameters change bifurcations occur and the
potential exists for the system to pass through a tipping
point. It is important to note that for any normal form
game there is a single unique fixed point when all Lagrange
parameters are set to zero and the number of fixed points
for non-zero Lagrange parameters is bounded by the num-
ber of Nash equilibria there are in the original game [19].

The second is that relative perturbations to system
parameters are sufficient to avoid catastrophes. This is
in sharp contrast to an idea implicit in much work on
tipping points that a system’s trajectory might need to
be stopped or even reversed in order to avoid a catastro-
phe. What we have shown here is that a suitable choice
of perturbation to the relative rate of change of system
parameters is sufficient to avoid passing through a region
in which fixed points collapse and significantly new and
distant fixed points need to be reached.

A final remark is in order on the nature of the MaxEnt
procedure. Note that for a given expected utility E(ua) for
one of the agents, the resultant QREL for that agent is
the flattest possible distribution consistent with E(ua), as
measured by the entropy. A more general case is one in
which instead of a single agent there is a market sector
of the economy that can produce many different products
where each type represents a strategy, the quantity pro-
duced represents a distribution over these strategy types
and the expected utility is some measure of economic
output such as the industry’s contribution to a nation’s
Gross Domestic Product [39]. In this case the MaxEnt
distribution provides for the greatest variety of products
consistent with a given economic output. In this sense it
maximises the Shannon Diversity Index (SDI) [40] sub-
ject to the expected economic output of the market sector.
The SDI is usually used in measuring species diversity in
ecosystems, suggesting an intriguing parallel between tip-
ping points, diversity and resilience in economics just as
there is in ecology research and its related issues with cli-
mate change tipping points [41].

Moreover, evidence of bifurcations have been found
in financial markets [42] and macro-economics [43]. Re-
cent evidence from econo-physics has also shown the sig-
natures of phase-transition like behaviour in both the
macroscopic [44] and microscopic [45] interactions in fi-
nancial markets. Such macro-economic systems, controlled
through variations in tax regimes, has already been pro-
posed [7] and provides a pragmatic situation in which con-
trol parameters can be manipulated. What has not been
previously addressed is the issue of tipping points and

their management. Early warning signatures of tipping
points are detectable before a catastrophic crash [36] and
so the possibility of navigating coupled non-linear systems
such as an economy around tipping points is one of the key
goals of such system level analysis.
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Theor. Econ. 11, article 18 (2011)
23. J.F. Nash et al., Proc. Natl. Acad. Sci. 36, 48 (1950)
24. T.M. Cover, J.A. Thomas, Elements of Information

Theory (Wiley-interscience, 2006)
25. R. Axelrod, Genetic Algorithms and Simulated Annealing

3, 32 (1987)
26. M.J. Osborne, A. Rubinstein, A course in Game Theory

(MIT press, 1994)
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